
ADOBE® DIRECTOR® BASICS

Last updated 3/24/2014

Legal notices

Legal notices
For legal notices, see http://help.adobe.com/en_US/legalnotices/index.html.

http://help.adobe.com/en_US/legalnotices/index.html

iii

Last updated 3/24/2014

Contents

Chapter 1: Preface

Credits . 1

Feedback . 1

Chapter 2: 3D basics

What is Shockwave3D? . 2

Organization of the 3D documentation . 3

Introduction to 3D . 4

The 3D world . 4

3D Sprites . 6

Controlling the 3D world . 8

2D and 3D workflows . 8

Adjusting appearance through scripting . 10

Programming movement and interactions . 10

The 3D Xtra extension . 11

Panels for managing 3D content . 12

The elements of a 3D world . 21

3D space . 22

Defining a shape in 3D space . 23

World space and model space . 25

Transforms, translation, rotation, and scale . 27

Using a parent to change the frame of reference of a 3D object . 30

Using a parent to group several objects together . 33

Using a shader to change the appearance of a model . 34

Shader types . 35

Using a texture to place an image on the surface of a model . 37

Resources, meshes, and shaders . 38

Lights . 40

Simulated light . 41

Light sources . 42

The shortcomings of lighting in Shockwave 3D . 44

Cameras . 44

Field of view . 46

Overlays and backdrops . 47

Interactions . 48

Modifiers . 50

Motions . 54

Physics . 55

Review . 56

3D output . 57

3D Renderers . 57

3D Anti-aliasing . 57

ivADOBE DIRECTOR BASICS

Contents

Last updated 3/24/2014

Saving the 3D world . 58

3D text . 58

Creating 3D text . 59

Modifying 3D text . 60

Script and 3D text . 60

Exceptions . 61

Lingo and JavaScript syntax script for 3D text . 62

Adding a text model to a 3D cast member . 63

Text in overlays and backdrops . 63

Sources of 3D content . 63

External 3D Files . 64

Loading from external files . 65

SketchUp . 65

Cloning from other 3D cast members . 67

Export issues . 68

Native 3D content . 71

Regular primitives . 71

Mesh resources . 72

Extruder resources . 74

Particle emitters . 74

3D behaviors . 75

Behavior types . 75

Using the 3D behavior library . 76

Local actions . 77

Public actions . 78

Independent actions . 78

Applying 3D behaviors . 79

About behavior groups . 79

Programming issues . 80

Preload requirements . 80

Lingo and JavaScript access to 3D objects . 82

3D namespace . 85

Chapter 3: 3D: Controlling appearance

Nodes . 88

Cameras . 101

Lights . 120

Shaders and appearance modifiers . 130

Textures . 141

Rendering . 154

Geometry . 159

Particles . 197

Chapter 4: 3D: Controlling action

Arranging objects in a 3D world . 202

Rotate() . 209

Using pointAt() to rotate a node . 212

vADOBE DIRECTOR BASICS

Contents

Last updated 3/24/2014

Moving the camera . 216

Moving to a new zone . 240

User interaction . 240

Mouse control . 242

Picking . 242

Pick Action behavior . 244

Sprite space and world space . 247

Dragging . 250

Keyboard control . 254

Customizing control keys . 259

Motion . 260

Code-driven motion . 260

Linear motion . 261

Interpolation . 264

Following a path . 267

Pre-defined animations . 270

Keyframe animations . 274

Bones animations . 276

Collisions . 279

Collision modifier . 280

Custom collision detection . 283

Rays . 285

2D barriers . 288

Bouncing off a wall . 291

Physics . 293

Physics member . 294

Controlling a physics simulation . 295

Physics world . 298

Physics world properties . 300

Rigid bodies . 307

Rigid body properties . 311

Rigid body methods . 316

Rigid body proxies . 317

Terrains . 319

Ray casting . 321

Collisions . 323

Joints and springs . 330

Angular joint properties . 334

Linear joint properties . 335

Spring properties . 336

D6Joints . 338

D6Joint method and properties . 343

Cloth . 348

Character controller . 352

Events . 355

Animation event callback . 358

viADOBE DIRECTOR BASICS

Contents

Last updated 3/24/2014

timeMS event callback . 359

3D mathematics . 361

Vectors . 361

Vector methods and operations . 364

Transforms . 370

Transform properties . 372

3D mathematics recipes . 378

Performance . 387

Low-polygon modelling . 388

Shader count and model count . 389

Specular light . 389

Culling . 389

Antialiasing . 390

suspendUpdates . 394

Physics simulations . 395

CPU-friendly code . 396

Using frame events wisely . 397

Chapter 5: Audio mixers and sound objects

Audio mixers . 400

Sound objects . 402

The Audio Mixer Inspector . 405

Adding a sound object to a mixer . 407

Applying filters to a sound object or mixer . 410

Playing a mixer or sound object . 412

Exporting a mixer or a sound object . 413

Modifying mixer, sound object, or Filter properties . 415

Activating a mixer . 416

Resetting a mixer . 417

Creating a mixer asset reference . 418

Mixing MP4 movie sound with other sounds . 419

Chapter 6: Asynchronous programming

Basics of asynchronous programming . 422

actorList and #stepFrame events . 426

Timeout objects . 428

Creating a timeout object . 429

Timeout object properties . 430

Using timeoutList . 433

Relaying system events with timeout objects . 434

Associating custom properties with timeout objects . 435

Downloading data from a remote server . 436

Interacting with PHP scripts . 439

Querying a MySQL database . 441

viiADOBE DIRECTOR BASICS

Contents

Last updated 3/24/2014

Chapter 7: Unicode support in Director

Limitations of Unicode support in Director . 443

Encoding and fonts . 443

Writing systems . 445

Supported languages . 446

Setting up input languages on Windows . 447

Setting up input languages on OS X 10.6 for Macs with Intel processors . 448

Using Unicode in scripts . 449

Creating Director movies in multiple languages . 451

Embedding Unicode fonts . 451

Storing text in any character set . 453

1

Last updated 3/24/2014

Chapter 1: Preface

'Adobe Director basics' is an introductory guide for a 3D/game developer to get started with Adobe Director. This

document is a self-learning guide, with examples and samples, on how to use Adobe Director to build simple to

complex multimedia applications.

Before you begin, install Adobe Director 11.5 and the latest patch (Help menu > Updates). By installing Director, you

can view the samples along with the code, and know about various possibilities by trying out different properties as

explained in the document. You can also use Shockwave Player to play the samples, without viewing the code.

Note: Ensure that you install the latest version of Shockwave Player. Else, an error occurs and the samples do not play.

This is the first version of the document, which explains some of the basic concepts of the following features:

• 3D (Basics, Controlling appearance, and Controlling action)

• Audio mixers and sound objects

• Asynchronous programming

• Unicode support in Director

This document is intended to be used in conjunction with Adobe Director Using Guide and Adobe Director Scripting

Dictionary.

Credits

The document is a collaborative effort involving James Newton, Adobe Director pre-release community, and Adobe.

The structure and content of this document were proposed and written by James Newton, a power-user and a

renowned Director expert. The Adobe Director pre-release community has lent its support by reviewing the structure

of the document and helping us finalize the flow of content.

The Adobe documentation team has done some minor edits to content, wherever necessary, to comply with the Adobe

standards.

Feedback

If you have any feedback, complaints, or suggestions about an article, please leave a comment at the end of the article.

Note: You need to log in with an Adobe ID to provide feedback.

http://www.adobe.com/products/director/
http://get.adobe.com/shockwave/
http://help.adobe.com/en_US/Director/11.5/UsingScripting/index.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS0c3ae2fbbc706611-689fe9bb11e3fdc84dc-8000.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS0c3ae2fbbc706611-689fe9bb11e3fdc84dc-8000.html

2

Last updated 3/24/2014

Chapter 2: 3D basics

Adobe® Director® lets you bring robust, high-performance 3D graphics to the web. With Director, you can develop a

wide spectrum of 3D productions, ranging from simple text handling to interactive product demonstrations to

complete immersive game environments. Using Shockwave® Player, users can view your work on the web with

Microsoft® Internet Explorer®, or other browsers that support web packaging.

Director lets you detect the capabilities of the user’s system and adjust playback demands accordingly. A powerful

computer with 3D hardware acceleration brings the best results, but users can successfully use Director movies with

3D on most Mac® or Windows® hardware platforms. The faster the computer’s graphics processing, the better the

results. The ability to adjust for client-side processing power makes Director ideal for web delivery.

What is Shockwave3D?

Shockwave3D allows you to simulate a three-dimensional scene on a two-dimensional screen.

In the real world, there are objects and sources of light. You can move around and see the objects from different angles.

Objects that are further away appear smaller than objects that are close to you. The same object looks different when

the lighting is different.

In the real world, objects are solid, and they obey the laws of physics. Some objects, like trees and buildings, are static.

Other objects, like human beings and chairs can move or be moved. Some objects, like clothes and paper can easily be

deformed. Real objects can be broken apart, exploded, burnt, or joined together. Real objects can be made to behave

in an infinite number of ways. Often, you cannot predict what will happen in the real world. The real world is very

complex.

In a simulated 3D scene, there are just pixels on a flat screen. If you want to give the illusion that these pixels represent

solid objects moving in three-dimensional space, you have to cheat. You have to trick your brain to make it imagine

real objects and not just pixels.

Shockwave3D does its best to trick your brain. A computer is not as fast as processing information as your brain, so

Shockwave3D has to take shortcuts.

Time and motion in the real world is continuous. When you watch a film in movie theatre, you see 24 static images

every second. Your brain merges these static images together and imagines that your eyes are seeing continuous

motion. A typical computer monitor updates its image 60 times a second. Director calls 1/60th of a second a tick.

In a simulated 3D scene, you can divide time into tiny discrete chunks, and your brain will not notice. Let's imagine

that the 2D representation of the 3D scene is updated 60 times a second. Let's also imagine that the scene is from a first-

person action game. The player's viewpoint changes all the time. There are moving characters and objects. None of this

action can be predicted in advance.

Sixty times per second, Shockwave3D has to calculate the new position of the player's viewpoint, and the new position

of each object in the scene. It may have to do complicated mathematical calculations to determine how one object falls

and whether it has collided with another object. When all the calculations have been done, Shockwave3D is ready to

set the color of each of the pixels on the screen.

If the screen is big and there are a lot of moving objects, this process requires a lot of computer power. The 3D section

of the Director documentation will help you understand how to make good use of the limited power of a computer to

create the best illusion of a 3D scene.

3ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Organization of the 3D documentation

3D Basics

If you have never worked with 3D before, then just keep reading. This first chapter, 3D Basics, explains to you in simple

language how Shockwave3D simulates objects in the real world. This chapter also explains where to find all the

windows, tools, and objects that you will need to build a virtual 3D world.

Controlling Appearance

You can think of a virtual 3D world in two completely different ways: as an artist or as an engineer. As an artist, you

will be concerned with what the virtual 3D world looks like. As an engineer, you will be concerned about how the 3D

objects act and interact with each other.

The Controlling Appearance chapter explains how to think like an artist. You will learn:

• How the shape of a 3D object is defined

• How to group objects together so that they move together as one object

• How to add detail and color to the surface of a 3D object

• How to give the illusion of light and shade

By the end of this chapter, you will understand how to create a world of static objects that look almost real.

Controlling Action

The Controlling Action chapter teaches you to think like an engineer. To help you simulate actions and interactions,

Shockwave3D provides you with many tools and devices. You can glue virtual objects together, you can join objects

together with hinges, you can link objects together with invisible springs.

 You will learn:

• How to move objects around

• How to move the user's viewpoint like a movie camera

• How to select an object by clicking on it

• How to make virtual objects appear to be solid

• How to make virtual objects behave as if they had weight

• How to simulate clouds, smoke, flames, fireworks, and other things that are made of many tiny particles

• How to simulate cloth and other soft items

A note about mathematics

Some of this interaction can be achieved without any knowledge of the mathematics used to describe 3D objects and

motions. However, if you understand a little 3D mathematics, you can create virtual worlds which are much more

convincing. Understanding mathematics is the key to being a good engineer.

3D mathematics is based on the well-known operations of addition, subtraction, multiplication, and division. The

mathematics themselves are not very complicated. However, to use 3D mathematics effectively, you need to have a

clear image in your head of what operation means in the 3D space. The difficulty is that any notes or drawings that you

make will be on 2D paper or a 2D screen. To visualize your calculations clearly, you may want to make simple models

out of cardboard, wire and string. To be a good mathematician, you have to be something of an artist.

4ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Introduction to 3D

Several Adobe® Director® features let you create a 3D movie:

A 3D cast member contains a complex internal structure that includes model resources, models, lights, and cameras.

Each of these objects has its own array of properties.

Director lets you convert 2D text to 3D and then work with the 3D text as you would with any other 3D cast member.

You can apply behaviors to the 3D text, manipulate it with Lingo or JavaScript™ syntax, and view and edit it in the

Shockwave® 3D window. You can also add extruded 3D text to a 3D cast member.

Director comes with a library of behaviors that let you build and control a 3D environment without any knowledge of

Lingo or JavaScript syntax. Although scripting is still required for complex projects, you can build simple 3D movies

with behaviors alone.

The 3D world

The end-user of a Shockwave3D movie sees a 3D sprite on the computer screen. You need to understand what is

happening within the computer to create that image in the 3D sprite.

A 3D sprite is a visual representation of a Shockwave3D cast member. Each 3D cast member contains a complete 3D

world. It can contain models (the objects that viewers see within the world) that are illuminated by lights and viewed

by cameras. A sprite of a 3D cast member represents a specific camera’s view into the world. Imagine that the 3D cast

member is a room filled with furniture with cameras pointing in from several windows. A given sprite that is using that

cast member will display the view from one of those cameras, but the room itself (the 3D cast member) remains the

same regardless of which view is used.

Developers will often talk about a "3D world" or a "3D scene". Often this has the same meaning as "Shockwave3D cast

member".

The key difference between 3D cast members and other cast members is that the models within the 3D world are not

independent entities—they are not sprites. They are integral parts of the 3D cast member.

Your movies can use 2D and 3D cast members simultaneously. For example, a product demonstration movie might

consist of a 3D cast member that represents the product and one or more 2D controls that allow users a virtual tryout

of the product.

Creating a world

In most cases, a 3D designer will use a third-party 3D modeling application, such as Autodesk® 3ds Max®, to create a

W3D file. When you import this 3D file into Director, it becomes a Shockwave3D cast member. To learn more about

importing W3D files, see “External 3D Files” on page 64.

You can also create an empty Shockwave3D cast member in Director itself. If you are comfortable with programming,

you can then build a virtual world piece by piece, using Lingo or JavaScript syntax. To learn more about creating 3D

content with Director, see “Native 3D content” on page 71.

Basic 3D objects

A Shockwave3D cast member contains all the information that defines a virtual world. A Shockwave3D cast member

is made up of a hierarchy of objects.

5ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Shockwave3D cast member

In a very simple 3D world, you can find:

• A camera object, which represents the user's viewpoint. If there were no camera, there would be no way to see the

virtual world.

• A light object, which defines a source of light. If there were no light object, there would be now way to create light

and shade. Light and shade help the brain to understand the three-dimensional shape of objects.

• A 3D model object, which represents a physical object in space. If there were no 3D model, there would be nothing

in the virtual world to see.

• A modelResource object, which defines the geometrical shape of the 3D model. If there were no modelResource,

the model would become an invisible point in space.

• A texture object, which shows the color and patterns on the surface of the model. If you think of the model as a

sculpture, you can think of a texture as paint on the surface of the sculpture. If there were no texture object, the

model would appear in shades of one uniform color.

• A shader object, which defines how the surface of the model reacts to light. Where a texture defines color, a shader

defines properties such as shininess, transparency, and reflection. You can think of a shader as representing the

material that a model is made from. If there were no shader object, all models look as if they were made of the same

uninteresting material.

• A group object, which defines how the model is related to other models and to the world itself. Every 3D cast

member has a group named "World". By default, every model, camera and light is a child of the group("World").

You can make one model the child of another model. The two models will then move together as if they were linked

together by an invisible bar. A model that is not a child of group("World") will not be visible to a camera that is a

child of group("World"). If you want a model to disappear, you can remove it from the World.

• A motion is a pre-defined animation sequence that involves the movement of models or model components.

Individual motions can be set to play by themselves or with other motions. For example, a running motion can be

combined with a jumping motion to simulate a person jumping over a puddle. Motions are controlled by a Bones

Player or a Keyframe Player attached to a model. Every 3D cast member has at least one motion named

"DefaultMotion". This is a placeholder motion; it has a duration of 0 milliseconds.

6ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Nodes

Only models are visible. The appearance of a model depends on the shaders and textures that are attached to it. You

cannot see a camera, a light, or a group.

Models, lights, cameras and groups all have a specific position in space. The term node is used to describe any 3D

object that has a position in space. Models, lights, cameras and groups are all nodes. You can link nodes together in

parent-child relationships. The two nodes will then move together as if an invisible bar linked them. For example,

might have a model called "Head" and a model called "Hat". You can make the hat model the child of a head model.

When the head moves, the hat will move with it.

A model that is not a child of group("World") will not be visible to a camera that is a child of group("World"). If you

want a model to disappear, you can remove it from the World. A 3D cast member can contain lights, models, groups,

and cameras that have no parent. These nodes and their children will not be displayed in the sprite.

Optional 3D objects

A 3D cast member can also contain other optional objects:

• Overlays and backdrops are two-dimensional areas. An overlay will appear in front of all the 3D models in the

virtual world. You can use an overlay to create a frame around a scene, to show a progress bar, to show text, to act

as a button, or any number of other things. A backdrop will appear behind all the 3D models. You can use a

backdrop to create a 2D background for the scene.

• Modifiers provide extra functionality for models. There are modifiers to:

• Create realistic movements for characters (Bones Player, Keyframe Player, Mesh Deform)

• Change the appearance of a model (Inker, Toon, Level of Detail, Subdivision Surfaces)

• Create the illusion of solidity (Collision)

• Physics objects provide ways to control the interactions between models. The list of physics objects includes rigid

bodies, terrains, springs, joints, and constraints.

Sound

A 3D world is silent. You need to create your 3D soundscape independently of the visual 3D world. You can add sound

to a Director movie in many ways. Director 11.5 and later supports 5.1 sound. If your end-users have a 5.1 sound

system connected to their computer, you can simulate sounds in three dimensions. If your end-users have headphones

or stereo speakers, you can use stereo as an alternative.

See Sound, and in particular “Audio mixers and sound objects” on page 400 for more information on how Director

can place sounds in 3D space.

3D Sprites

When you place a Shockwave3D cast member on the Stage, a 3D sprite is created. Every 3D sprite has at least one

camera. The settings for the camera determine the view that appears in the 3D sprite.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6e64.html

7ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Rect

By default, a 3D sprite is 320 x 240 pixels. Like other sprites, you can change the rect of the sprite by dragging the

corners and edges. The bigger you make the sprite, the more computer processing power it will need to update the

image. Director needs to calculate the color of every pixel in the sprite image every time the image is refreshed. More

pixels mean more calculations. If you are designing a project for relatively slow computers, test whether the size of your

3D sprite is appropriate for the target computers.

DirectToStage

By default, the cast member of a 3D sprite is drawn "Direct To Stage" (DTS). This means that Director sends the image

for the 3D sprite directly to the screen display driver controlled by your computer's operating system. This is very

much faster than sending the image to Director's display system, where each sprite needs to be layered on top of other

sprites. The disadvantage is that a 3D sprite will appear on top of all other sprites. Sprite inks will not work on a 3D

sprite set to display direct to stage.

Suppose you want to show sprites on top of a 3D sprite. Suppose you want your 3D sprite to have a transparent

background, so that you can see the sprites that are behind it. You can switch off the DTS display. The disadvantage is

that your movie will run more slowly, since Director now has to do more work with inks and layers.

To learn more about setting the Direct To Stage property of a Shockwave3D cast member at “Using the Property

Inspector for 3D” on page 14. For more information on this property, see member3D.directToStage.

Effect of DirectToStage on frame tempo

The effect of switching off Direct To Stage display depends on the operating system. In Windows, the movie may run

at around 85 % of its maximum possible DTS speed.

In Mac OS 10.6 and later, Director 11.5 movies may be capped at 60 frames per second. Changes made in Mac OS 10.6

and Director 11.5 now limit the number of screen update requests. The screen will no longer be updated faster than

the monitor can be refreshed.

When a Shockwave3D cast member is set to display Direct To Stage, and where there is no other animation, Director

can ignore the monitor refresh rate. The movie can report a much faster frame tempo. Nonetheless, the end user will

only see screen updates at the rate at which the monitor is refreshed.

If you set the movie's frame tempo to 60 frames per second or less, you can avoid unexpected playback results on all

supported platforms.

Frames and Backgrounds

A DTS sprite will be rectangular and opaque. You will not be able to see any sprites behind it.

You may want to give the impression that a DTS 3D sprite is an irregular shape (not a rectangle). You can use overlays

to create a border that continues the design for the background for the rest of your movie.

You may want to give the impression that the 3D models are floating above the background on the Stage. You can use

a backdrop which fits seamlessly into the Stage background.

 See “Overlays and backdrops” on page 47 for more details of both these features.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b4-4fdb6b3c11d55855946-7f0a.html

8ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Controlling the 3D world

Elements of a 3D scene can be modified and manipulated with 3D behaviors. The Library Palette contains many

behaviors that can be used to perform simple actions. You can find more information about these at “3D behaviors”

on page 75.

In general, the behaviors in the Library Palette are a good way to control a single aspect of a 3D world. Behaviors are

a good way to:

• Display a rotating logo

• Show a panoramic view of a scene

• Control the rotation of an object, so that the viewer can see it from all sides

• Play a pre-animated 3D scene

• Drag a single model with the mouse and other simple interactions.

More complex control of 3D world requires an understanding of scripting. Chapters “3D: Controlling appearance” on

page 88 and “3D: Controlling action” on page 202 explain scripting for 3D worlds in more detail.

To create an interactive 3D game, for instance, you will need to write your own custom behaviors. You will probably

find it useful to understand the principles of Object-Oriented Programming (OOP). In Director, you can use Parent

Scripts and ancestors to create separate modules of code. Each module or Parent Script can deal with one specific

feature of your interactive 3D world.

You can find an excellent introduction to Object-Oriented Programming in Lingo by Irv Kalb here. Irv Kalb's eBook

does not specifically deal with controlling 3D worlds, but all the principles in the book are applicable.

2D and 3D workflows

Perhaps you are used to working with Director's 2D Stage, Score, Sprite, and Cast Member workflow. If so, and if you

are new to 3D, then this section is for you. If you are new to Director, but have some knowledge of 3D design, then you

will also find this section interesting. Also see Chapters Workspace and Score, Stage and Cast, to discover how

Director's 2D workflow functions.

The 2D workflow

Director works best at assembling media that have been created in specialized applications. For creating images, you

will probably use Photoshop. To create sounds, you can use Adobe Audition or Adobe Soundbooth.

For creating a complex 3D world, you will need a third-party 3D design application like 3ds Max. You can export the

3D world as a W3D file, and import it as a Shockwave3D cast member. You can then place the Shockwave 3D cast

member on the Stage as a sprite.

To summarize:

• The Stage is the authoring area where the Director movie is assembled.

• The Score displays the arrangement of channels that organize, display, and controls the movie over time.

• The Cast window is where all cast members, including the 3D cast members, are stored. Cast members are the

media in your movies, such as sounds, text, graphics, and 3D scenes.

• Sprites are instances of cast members that appear on the Stage with individual properties and attributes.

http://www.furrypants.com/loope/
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b4-25f5cf9b11d55853785-8000.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b4-4fdb6b3c11d55855946-7e86.html

9ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

• A sprite of a 3D cast member displays a particular camera’s view into the 3D world. The 3D cast member contains

models, which are individual objects inside the 3D cast member.

• The Library Palette lets you select the behaviors you want to use.

• The Behavior inspector lets you create and modify behaviors.

You will use the Stage, Score, Sprite and Cast Member workflow to place a Shockwave3D cast member on the Stage.

You can use the Library Palette and - Behavior Inspector to add and edit behaviors on the 3D sprite. For an

introduction to 3D behaviors and the Behavior inspector, see “Learning more about 3D behaviors” on page 20. For a

full discussion on the built-in 3D behaviors, see “3D behaviors” on page 75.

The 3D workflow

To control what happens inside the 3D sprite, you will need to use a different workflow. To control a 3D scene on a

2D screen you need to use scripts much more than for a 2D scene.

Director provides you with two windows where you can manipulate the view in the 3D sprite.

• “Using the Shockwave 3D window” on page 12

• “Using the Property Inspector for 3D” on page 14

These windows allow you to change settings that affect the 3D world as a whole. They also allow you to manipulate the

position and rotation of the main camera. However, they do not allow you to adjust the position or properties of any

models or any of the other nodes.

Using Lingo and JavaScript syntax

You can perform many basic 3D operations by using the built-in 3D behaviors in Director (see “3D behaviors” on

page 75).

For all other manipulations of the 3D world, you will need to use your own custom scripts and commands. You will

need to use either Lingo or JavaScript™ syntax, the built-in scripting languages of Director.

You can use the Message Window to set the properties of objects within the Shockwave3D cast member and to send

commands to the 3D sprite. You can use the Object Inspector to display the values of any 3D property in real time.

The 3D documentation assumes that you understand either Lingo or JavaScript syntax. If you have not yet learned

Lingo or JavaScript syntax, see the Scripting Reference topics in the Director Help Panel, which list all of the Lingo and

JavaScript syntax methods and properties that are available in Director. The Scripting Reference topics in the Director

Help Panel describe each expression, illustrate its syntax, and provide examples.

Lingo and JavaScript syntax are the Director scripting languages. They can be used to create movies that are more

complex and interactive. For detailed Lingo and JavaScript syntax information, see “3D: Controlling appearance” on

page 88 and “3D: Controlling action” on page 202.

In the Message and Script Editor windows, you can use the Alphabetical 3D Lingo and Categorized 3D Lingo

contextual menus to find appropriate scripting terms.

Getting started with 3D Text

Director provides easy but powerful 3D text handling. If you are new to 3D or to writing scripts, 3D text is a good place

to start learning. You will be able to create a simple 3D movie with no need to write any code of your own. For more

information, see “3D text” on page 58.

10ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Adjusting appearance through scripting

There are two main ingredients in a Shockwave3D world: appearance and action. A 3D graphic designer can define

the appearance of a 3D world using third-party 3D design software. In many cases, you will not need to use scripting

to set the appearance of the 3D world at all.

If you plan your project right, you can limit scripting to only those things that need to change in real time. This is the

main topic of “3D: Controlling appearance” on page 88.

You will need to use scripting to:

• Change how models are grouped together (“Nodes” on page 88)

• Change the view shown by the camera (“Cameras” on page 101)

• Create static or dynamic overlays and backdrops (“Overlays and backdrops” on page 112)

• Change the lighting of a scene (“Directional lights” on page 124)

• Change the appearance of the surface of models “Shaders and appearance modifiers” on page 130, “Textures” on

page 141, “Rendering” on page 154)

• Change the shape of a model (“Geometry” on page 159)

• Control the display of a particle system (“Particles” on page 197)

Programming movement and interactions

Without action, a 3D world becomes a static 2D image. Most of the code that you write controls the movement of

objects and the interactions between objects. This is the main topic of “3D: Controlling action” on page 202.

Actions

You need to use scripting to control:

• How objects move relative to each other and relative to the world (“Motion” on page 260).

• The movement of the camera “Moving the camera” on page 216).

• How the user interacts with the 3D world using the keyboard and the mouse (“User interaction” on page 240).

• The illusion that the models in the 3D world are solid, and the collisions between them (“Collisions” on page 279)

• The illusion that the models are bound by the laws of physics (“Physics” on page 293).

• The events that occur when models interact with each other (“Events” on page 355).

Mathematics

Shockwave3D is designed to take care of as much of the low-level mathematics as possible, so that you do not need to

worry about mathematics. However, to get the most out Shockwave3D, you need to understand:

• The 3D coordinate system

• How to define movements, positions, rotations and orientations

• How 3D space appears differently to different 3D objects

These topics are dealt with in “3D mathematics” on page 361.

11ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Performance

Simulating a 3D world requires an enormous number of calculations, many times a second. You will want to get the

most out of computers with low specifications, and to create the most spectacular 3D experience on high-end

computers.

The less you ask the computer to do, the faster it can do it. In “Performance” on page 387 you will learn how to

minimize your use of certain techniques in order to maximize the end-user's overall experience.

The 3D Xtra extension

The 3D capabilities of Shockwave3D are brought to Director by the 3D Xtra extension. The 3D Xtra extension depends

on a number of other xtra extensions in order provide all the 3D features. For Shockwave3D to work correctly, the

following xtra extensions must be included in a projector:

Macintosh:

• Shockwave 3D Asset Xtra.xtra

• SWA Decompression PPC Xtra.xtra

• InetUrl PPC Xtra.xtra

• NetFile PPC Xtra.xtra

Windows

• Shockwave 3D Asset.x32

• SWADCmpr.x32

• INetURL.x32

• NetFile.x32

If your movie uses simulated physics, then you will also need to include:

Macintosh:

• Dynamiks.xtra

Windows

• Dynamiks.x32

You will find all these xtra extensions in the Xtras folder, which is inside the Configuration folder placed alongside the

Director application.

The 3D Xtra extension lets you include 3D models in a Director movie. You can import 3D models or worlds created

with a 3D modeling program, and use Director to deliver them on the web. You can also combine the abilities of

Director and your 3D modeling software by building a 3D world in your modeling program and adding to it or

modifying it in Director.

To use 3D images and text created in a third-party rendering software, you must convert the file to W3D (Web 3D),

DAE (Collada), and SKP (Sketchup), which Director supports. Typically, each rendering application requires its own

specific file converter to create W3D files. For more information about creating W3D files, see the documentation for

your 3D modeling software.

12ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Panels for managing 3D content

When adding 3D features to a Director movie, you are likely to use the following panels:

• Stage

• Cast

• Score

• Script editor

• Object Inspector

• “Using the Shockwave 3D window” on page 12

• “Using the Property Inspector for 3D” on page 14

• “3D Behaviors in the Library Palette” on page 17

• “Learning more about 3D behaviors” on page 20

The Stage, Cast, Score, Script editor and Object Inspector panels function in exactly the same way for 3D content as

for any other content. This section provides information on the panels that have 3D-specific features.

Using the Shockwave 3D window

The Shockwave 3D window provides an easy way for you to inspect a 3D cast member. Some properties of 3D cast

members can also be edited in this window. However, you cannot manipulate any of the models directly.

1 Select a 3D cast member in the Cast window, in the Score, or on the Stage.

2 Click the Shockwave 3D Window button on the Director toolbar, double-click on the 3D cast member, or press the

Return or Enter key.

The Shockwave 3D window appears, displaying the 3D cast member currently selected in the cast.

Shockwave 3D window

13ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

3 Use the following controls:

• The camera buttons along the side (Dolly, Rotate, and Pan) let you change your viewing angle by zooming in

and out, moving around the world origin, and moving in a straight line horizontally or vertically, respectively.

Hold the Shift key while using these tools to make the camera move faster.

Camera buttons

A. Dolly Camera B. Rotate Camera C. Pan Camera

• The two buttons below the camera buttons let you control whether the y-axis or the z-axis is the up axis when

using the Camera Rotate tool.

Camera buttons

A. Camera Y Up B. Camera Z Up

• The playback buttons let you either play the cast member’s animation at normal speed or step through the

animation, forward or backward, by using mouse clicks to control the movement.

• The Loop button lets you play animations within the 3D cast member repeatedly.

• The Set Camera Transform and Reset Camera Transform buttons let you set and undo the changes you make

to camera angles for the member’s default camera. Reset Camera Transform restores the camera to the

previously remembered position. Set Camera Transform remembers the current camera position. When you

save your movie, the newly set camera position and orientation will be saved.

Camera buttons

A. Reset Camera Transform B. Set Camera Transform

• The Root Lock button fixes an animation in place, so that it doesn’t change its position on the Stage while

playing.

• The field at the top of the Shockwave 3D window shows the name of the cast member on display. The square

button to the left of the text box lets you drag that cast member to the Stage or the Score.

• The New Cast Member, Previous Cast Member, and Next Cast Member buttons at the upper left of the

Shockwave 3D window let you add or display 3D cast members.

• The Reset World button restores the 3D scene to its original state, with all models, cameras, and so on

assuming their original positions. If you have used Set Camera Transform, the camera will revert to the last

position that you set. If you need to reset your 3D world completely, use File > Revert. However this option

deletes all the changes since you last saved.

Alternatively, you can re-import the W3D file.

14ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Using the Property Inspector for 3D

With the Property inspector, you can modify the 3D cast member without using scripts. The 3D Model tab of the

Property Inspector offers a simple way to view and control numerous aspects of the 3D world.

1 Select a 3D cast member in the Cast window, on the Stage, or in the Score.

2 Click Property Inspector in the toolbar.

3 Click the 3D Model tab in the Property Inspector.

The Property Inspector appears in Graphical view. If the Property Inspector is in List view, click the List View Mode

icon to toggle the view to Graphical.

Property Inspector at the 3D Model tab with List View Mode icon circled in red

The Property Inspector’s 3D Model tab provides the following options:

• The text boxes at the top of the tab show the initial position and orientation of the default camera. The default (0,

0, 0) represents a vantage point looking up the z-axis through the middle of the screen. The values you enter in these

text boxes replace the displayed values and move the camera.

See “Cameras” on page 101 for more information on the camera view. See “Vectors” on page 361 and “Transforms”

on page 370 for more information on how the position and orientation of the camera is defined.

• The Direct To Stage (DTS) option controls whether rendering occurs directly on the Stage (the default) or in the

Director offscreen buffer. The offscreen graphics buffer is where Director calculates which sprites are partly hidden

behind other sprites. When Direct To Stage is on, Director bypasses its offscreen buffer and saves time, increasing

playback speed. However, when Direct To Stage is on, you cannot place other sprites on top of the 3D sprite.

• The Preload option controls how media that is being downloaded to the user’s computer is displayed. The media

can be held back from display until it has been completely streamed into memory, or it can be displayed

progressively on the Stage as data becomes available.

• The Play Animation option controls whether any existing animation, either bones or keyframe, is played or

ignored.

• The Loop option controls whether the animation loops continuously or plays once and stops.

For more information on animations, see “Pre-defined animations” on page 270.

15ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

• The Director Light area lets you select one of ten lighting positions to apply to a single directional light. You can

also adjust the color for the ambient light. (Directional light comes from a particular, recognizable direction;

ambient light is diffuse light that illuminates the entire scene). Finally, you can adjust the background color of the

scene.

For more information see “Pre-defined animations” on page 270

• The Shader Texture area lets you work with shaders and textures. A shader determines the method used to render

the surface of a node. A texture is an image that is applied to the shader and drawn on the surface of the model. All

new models use the default shader until you apply a different shader. Using the Property inspector, you can assign

a texture to the default shader. You can also control the default shader’s specular (highlight) color, its diffuse

(overall) color, and its reflectivity. For more information, see “Shaders and appearance modifiers” on page 130 and

“Textures” on page 141.

Using the Property inspector for 3D: List View

When the Property Inspector is in List View, the 3D Model tab gives you access to the same information in a different

format, along with some new items:

Property Inspector in List View showing the 3D Model tab

In List View, the Property inspector’s 3D Model tab provides the following additional information:

• Duration of the movie's animations (read-only).

• RegPoint of the 3D cast member. By default this is point(160, 120), but you can set it to any point value.

16ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

• DefaultRect of the 3D cast member. By default, this is 320 x 240 pixels. This determines the initial size of the 3D

sprite when you drag the cast member onto the Stage, or into the Score. You can change the rect of the sprite on the

Stage without affecting the member's default rect.

• PercentStreamed, bytesStreamed, streamSize and state properties (all read-only). A 3D member that has been

imported into the cast will show maximum values for all these properties. A linked external W3D file that is

streaming from a remote server can show a series of different values as the W3D file is downloaded.

Using the Property inspector for 3D: Renderer

Information on the 3D renderer that a Director movie uses is displayed on the Movie tab of the Property Inspector.

17ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Two views of the 3D Renderer information in the Property Inspector

For more information on the different 3D renderers, see “Rendering” on page 154.

3D Behaviors in the Library Palette

The Director Library Palette includes 3D-specific behaviors. To open the Library Palette, choose the menu Window >

Library Palette. You can find the 3D behaviors under 3D > Actions and 3D >Triggers.

The Library Palette in Thumbnail view showing 3D Action behaviors

18ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The Library Palette in Tree view, showing how to access the 3D Trigger behaviors

3D behaviors are divided into four types: local, public, trigger, and independent.

Local Behaviors

For the local behaviors listed below, the user must click and drag the 3D sprite itself, or press a key while the 3D sprite

has keyboard focus. One or more Trigger behaviors need to be added to the same 3D sprite in order to control the

action.

• Fly Through

• Drag Camera

• Drag Model

• Drag Model to Rotate

• Click Model Go To Marker

• Play Animation

• Create Box

• Create Sphere

• Create Particle System

19ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Public Behaviors

For the public behaviors listed below, you can place a Trigger behavior on any sprite. For example, for the Dolly

Camera behavior, you can create two separate buttons on the Stage. To one of these buttons you can add a Trigger

behavior to make the camera dolly in (move forward). To the other button, you can add a Trigger behavior to make

the camera dolly out (move backwards). The user can now click these buttons in order to control the forward and

backward movement of the camera.

• Dolly Camera

• Pan Camera Horizontal

• Pan Camera Vertical

• Rotate Camera

• Reset Camera

• Toggle Redraw

• Generic Do

Trigger Behaviors

Local and public behaviors must be paired with Trigger behaviors. When the user performs the appropriate mouse or

keyboard action, the associated Action behavior on the 3D sprite will be triggered. For example, attaching the Create

Box action and Mouse Left trigger behaviors to a 3D sprite causes a box to be created in the 3D world each time the

sprite is clicked with the left mouse button.

• Mouse Left

• Mouse Right

• Mouse Enter

• Mouse Within

• Mouse Leave

• Keyboard

Independent Behaviors

The behaviors listed below do not need a trigger. Their functionality is applied automatically. The Toon behavior, for

example, changes a model’s rendering style to the toon style.

• Automatic Model Rotation

• Orbit Camera

• Model Rollover Cursor

• Sub Division Surface

• Level of Detail

• Show Axis

• Toon

20ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Learning more about 3D behaviors

Viewing tool tips for 3D behaviors

In the Library Palette, hold your mouse over the icon for any behavior. A tool tip appears to give a brief description of

what the behavior does, and how to use it.

Hover the mouse over a behavior in the Library Palette to see a tool tip

Using the Behavior Inspector with 3D behaviors

You can drag a behavior from the Library Palette onto a sprite on the Stage or in the Score, or you can drag a behavior

into the Cast window. You can now use the Behavior Inspector to see a more complete description of the behavior.

The Behavior Inspector showing the description of the Fly Through behavior

Select a behavior in the Cast Window, or select a sprite to which the behavior is attached and make sure the Score or

the Stage is the front window. If you now open the Behavior Inspector you can read a full description of the behavior.

21ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

To open the Behavior Inspector:

• Double-click on any behavior (except if you changed the preferences for the default editor for behaviors, as

described at Launching external editors).

• Right-click (Windows) or Control-click (Mac) on a sprite, and choose Behaviors from the contextual menu.

• Choose the menu item Window > Behavior Inspector.

• Use the associated keyboard shortcut: Ctrl-Alt-; (Windows), Command-Option-; (Mac).

The elements of a 3D world

In “The 3D world” on page 4, you can find a summary of the different elements that can be found inside a 3D cast

member. This section explains the relationships between all these elements. You will learn how all the objects in a 3D

cast member work together to create the scene in the 3D sprite. Each article in this section describes one type of 3D

object in detail, and shows how it interacts with the other 3D objects.

Everything that you can see in a 3D sprite is a model. Every model has a position and an orientation in 3D space. A

model resource defines the shape of a model. A shader defines the appearance of the surface of a model. A texture is an

image that appears in a layer of a shader; a texture appears like paint on the surface of the model. A transform defines

the position and orientation of a model in 3D space. A light illuminates the 3D world. Some lights create an effect of

light and shade on models. A camera shows the models in the 3D world from one particular viewpoint. A physics object

gives a model the appearance of weight, solidity and flexibility.

This section shows you how these concepts work together. This section also includes many demonstrations of what

Shockwave 3D can do.

• 3D space

• Model resources

• Models

• Groups

• Frames of reference

• Transforms

• Shaders

• Textures

• Lights

• Cameras

• Physics

Concepts and Code

This section is designed to help you understand the concepts involved in creating an interactive 3D movie. The section

also includes a number of movies that are designed to illustrate these concepts.

This section is not designed to teach you to write your own 3D scripts. You will learn to write 3D scripts in “3D:

Controlling appearance” on page 88 and “3D: Controlling action” on page 202.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b4-4fdb6b3c11d55855946-7ffb.html

22ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Do not worry if you do not understand all the code in all these example movies. A simple illustration sometimes

requires complex code. First focus on the concepts. You can come back to these movies later to study the code in more

detail.

Some of the movies contain code that you will need to change in order to understand a particular concept. Here's an

example:

If you need to edit any code, the changes will be clearly labeled

For simplicity, all the code in this section will be in Lingo only. You will find links to articles in other sections where

can find information on writing code in JavaScript syntax.

3D space

On Director 2D Stage, the position of every sprite is defined by its distance in pixels from the left side and from the top

of the Stage. A sprite at the point (102, 34) is positioned 102 pixels from the left and 23 pixels from the top of the Stage.

In a 3D world, positions are measured in world units from a position at the center of the world. It is up to you to decide

whether these world units represent microns, millimeters or miles. You need to measure in three different directions.

These directions are named x, y and z.

• x - to the right

• y - upwards

• z - forwards

These directions are orthogonal, which means that they are all at right-angles to each other. Each of these directions is

called an axis. The plural of axis is axes (pronounced ax-eez).

In Director, these axes are colored:

• x-axis - red

• y-axis - green

• z-axis - blue

To visualize these axes, download the movie 3dSystem.dir and launch it.

Open the Shockwave 3D window. To do this, double-click on the 3D sprite in the Score or on the Stage, or on the "3D

World" member in the Cast window. You can now view the scene from different angles, and check that the three axes

are indeed always at right-angles to each other.

Select the Rotate Camera tool, then drag the view in the preview window.

http://www.adobe.com/support/director/examples/3dSystem.dir

23ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

As you rotate the camera in the Shockwave 3D window, you can see two other sets of axes. The behavior on the 3D

sprite executes a statement similar to the following:

 member("3D World").debugFlags = 2

This statement shows the position and orientation of all the invisible objects (cameras, lights and groups) in the scene

by showing the axes of each object. What you see in the initial view is the position and orientation of the

group("World").

As you rotate the camera in the Shockwave 3D window, you can also see the axes for a directional light and for the

camera that is used to create the view in the 3D sprite. (You can see the axes for the camera at the top right in the image

above). An ambient light is also present. However, its axes coincide exactly with those of group ("World"), so you will

not see a separate set of axes for the ambient light.

A handy mnemonic device

You can reproduce the directions of these three axes with your right hand.

Hold your right hand up in front of you at the same level as your eyes, with the palm towards you. Point your thumb

out to the right. Point your index finger upwards. Point your middle finger towards your eyes.

Note: Use your right hand even if you are left-handed.

The three fingers indicate the directions of the 3D world's three axes:

x-axis - thumb to the right

y-axis - index finger upwards

z-axis - middle finger towards you

The right-hand rule

The origin of the world

Every 3D cast member contains a group called "World". This group cannot be deleted. By definition, this group is

placed at the center of the 3D space. Its position is defined as vector(0, 0, 0).

By default, all the models, lights, and objects in a 3D cast member are children of group("World"). (You will discover

an interesting technique with nodes that are not children of the World in “Sky box” on page 108). The position of all

these child nodes can be measured from the origin point at vector(0, 0, 0).

Defining a shape in 3D space

A model resource defines a 3D shape in space. In the real world, a three-dimensional object is solid. On a computer, a

simulated 3D object is made of vertex points that are joined together by lines to create triangular faces. These triangular

faces are often called polygons. (Some 3D design applications allow you to create faces with more than 3 sides, but

Director only allows you to use triangles.)

It is not possible to see a model resource. As far as your computer is concerned, a model resource is just a set of

numbers. To see what those numbers represent, you need to create a model from the model resource.

To see an example, download the movie Cube.dir and launch it.

http://www.adobe.com/support/director/examples/Cube.dir

24ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The movie Cube.dir creates a cube model and places it at the center of the 3D world

Open the Shockwave 3D window by double-clicking on the "3D World" member in the Cast window, and use the

Rotate Camera tool to view the cube from all sides.

The code in the "Create Cube" behavior does 4 key things:

1 Creates a model resource using a box primitive (see “Regular primitives” on page 71).

2 Creates a model using the new model resource.

3 Makes both the inside and the outside faces of the model visible.

4 Changes the shader used by the model so that the vertex points and faces are visible.

Do not worry about how the code works yet. What you need to study is how the box shape is defined. When you finish

reading this section, you will be able to understand the code.

To create a realistic box, you only need 8 vertex points and 12 polygons.

Note: To create a realistic human figure, you need several hundred vertex points and faces. The more polygons a model

resource has, the more calculations Director needs to make in order to display it. If your 3D world needs to react quickly

to user input, it is a good idea to use as few polygons as possible.

Vertex points

The model resource in the Cube.dir movie has 8 vertex points. The first one is at the position vector(25, -25, -

25). To reach that point, you:

• Start at the center of the world at vector(0, 0, 0)

• Move 25 world units in the same direction as the red x-axis

• Move 25 units downward (in the opposite direction of the green y-axis)

• Move 25 units backwards (in the opposite direction of the blue z-axis)

25ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The pictures below show a simplified rendering of the cube shown from back. The first vertex is shown at the bottom

of each picture.

The index numbers and the world positions of the first 4 vertex points in the Box Resource

Here's a complete list of vertex points for the cube:

[vector(25, -25, -25), vector(-25, -25, -25), vector(25, 25, -25), vector(-25, 25, -25),
vector(-25.0000, -25.0000, 25.0000), vector(25.0000, -25.0000, 25.0000), vector(-25.0000,
25.0000, 25.0000), vector(25.0000, 25.0000, 25.0000)]

You'll notice that all vertex points are 25 world units away from the center of the world, in each direction. This means

that the center of this cube is at the center of the world.

Note: The 8 vertex points are not enough on their own to define a cube shape. The same 8 points could be linked together

in different ways to create many different shapes. You will find more information about how the faces of a model resource

are defined at “Creating a mesh resource” on page 170.

World space and model space

In the example in “Defining a shape in 3D space” on page 23, the axes of the model resource and the axes of the world

are aligned. The rear bottom right corner of the Box Resource was at the position vector(25, -25, -25) in the 3D

world, and it was also at vector(25, -25, -25) in its own internal space. What happens if you move the model or

rotate it?

Download the movie Transform.dir and launch it. This movie shows the same cube as in the movie Cube.dir with two

differences:

• The inside of the box is not visible. (This is a cosmetic difference to simplify the view).

• The cube has moved and rotated.

http://www.adobe.com/support/director/examples/Transform.dir
http://www.adobe.com/support/director/examples/Cube.dir

26ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The position of vertex 1 after the cube has been moved and rotated

As before, use the Rotate Camera tool to look at the cube from all sides.

In this movie, the cube can be imagined with respect to two different frames of reference: model space and world space.

The first vertex in the model resource's vertexList is still at vector(25, -25, -25), when it is seen from the model's

point of view. Because of the altered position of the model in the 3D world, the same point is now at a different point

when it is seen in world space. (See the orange circle). The output in the Message window indicates the position of the

vertex in world space: vector(59.1506, -50.0000, -9.1506).

Using the debug property of a model

Type the statement below into the Message window.

 member("3D World").model("Cube").debug = TRUE

When you do so, Director displays:

• The x-, y- and z-axes for the model

• The model's boundingSphere. This is the smallest sphere that can contain all the vertex points in the model.

The image below shows the result. Note that the statement shown in the Message window has exactly the same effect

as the statement quoted above.

27ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Using the debug property of the Cube model to visualize its origin, axes and boundingSphere

You can now see two sets of red, green, and blue axes: one for the world itself, and one for the model. This illustrates

the different frames of reference for the world and for the model.

Frames of reference

In the real world, we are able to handle multiple frames of reference without being aware of them. When you reach for

your mouse to click on a button on the screen, you make a complex movement in 3D space with your arm that results

in the mouse moving in horizontal 2D space on your desk. This in turn causes the mouse pointer to move in an almost

vertical 2D space on your monitor. You can move the mouse pointer without being conscious of all the muscles that

you use.

When simulating movement in a virtual 3D world, you need to pay close attention to the frame of reference of each

object. Simulating the movement of a virtual hand means controlling the movement of a virtual upper arm, a virtual

forearm and a virtual hand. Each of these objects moves in a different frame of reference, controlled by a shoulder, an

elbow, and a wrist.

You can learn more about this in “Transforms, translation, rotation, and scale” on page 27 and “Using a parent to

change the frame of reference of a 3D object” on page 30.

Transforms, translation, rotation, and scale

How does Shockwave 3D control movements in three dimensions? This article treats the ideas illustrated in “World

space and model space” on page 25 in more detail.

Download the movie Transform.dir and launch it. This movie creates a 3D cube at the center of the world, and then

moves it to a new position. It prints out information about the movement in the Message window.

http://www.adobe.com/support/director/examples/Transform.dir

28ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The Message window displays the transform of the cube and the position of vertex 1, both before and after the movement

Transforms

The position of the Cube model is described by its transform. You can see the numbers that make up the model's

transform in the picture above. In the Message window, there are two sets of numbers. The first set of numbers

(#before transform) describes the cube at the center of the world. The second set of numbers (#after transform)

describes the cube's new position and rotation.

Director lets you manipulate transforms in many ways without using any complicated mathematics. Much of the time,

you will not even realize how much number-crunching Director is doing for you.

The position and axes of a transform

Here is the transform of the cube model after it is moved, arranged in a table with explanatory headers:

The first three rows in the transform indicate the direction of each axis of the model in world space. The first line

indicates that the x-axis of the model points a little to the right, neither up nor down, and quite a bit forward. The

second line shows that the y-axis of the model points in the same direction as the y-axis of the world. The third line

shows the direction of the z-axis of the model in world co-ordinates. You can compare these figures with the directions

of the colored axes that you see when you set the debug property of the Cube model to TRUE.

The last four numbers indicate the position of the model. The model has been moved 25 units along the world's x-axis

and 25 units downwards, in the opposite direction to the world's y-axis. The final 1 in the transform indicates that this

information defines a position in space.

As an exercise, try to create the same table for the #before transform. Do you see how each axis of the model

corresponds exactly to the same axis in the world?

world x-axis world y-axis world z-axis direction (0) or

position (1)?

transform x-axis 0.50000 0.00000 0.86603 0

transform y-axis 0.00000 1.00000 0.00000 0

transform z-axis -0.86603 0.00000 0.50000 0

position 25.00000 -25.00000 0.00000 1

29ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Applying a transform to a position

A transform is a frame of reference in mathematical terms. When a transform is applied to a vector position, it moves

that vector position to a new point in space. The lines highlighted in yellow in the Script window and the Message

window show what happens when a neutral transform is applied to the position of vertex 1: it stays the same. The lines

highlighted in orange in the Script window and the Message window show what happens when the modified transform

is applied to the position of vertex 1. In this case, the vertex moves to the new position that is shown by the orange

circle.

For more mathematical information concerning transforms, see “Transforms” on page 370.

Translation

To move a model from one position to another, you can use the node.translate() command. In the simplest terms, the

translate() command tells the model how far to move to the right, how far to move up, and how far to move

forward.

After a translate()command has been executed, the model will still be facing in the same direction. When you think

about a translate() command, the order of the three separate movements is not important. Imagine that you move

a model 3 units to the left, 4 units down and 7 forward. The model would arrive in exactly the same spot as if you started

from the original position and moved it 7 units forward, 3 units left, and then 4 units down.

Rotation

To rotate a model, you can use the rotate() command.

In a 3D world, you can rotate around three different axes: x, y and z. The rotate() command expects a value in

degrees for each axis. For example, this statement will rotate the Jug model 45°around the x-axis, -90° around the y-

axis, and 0° around the z-axis:

 member("Dinner Party").model("Jug").rotate(45, -90, 0)

The order in which the rotations are performed is important.

Imagine that you are sitting at a table. You have a cup in front of you, and you are holding a jug of water to the right

of the glass. Imagine that the handle of the jug is to your right. You take hold of the jug and tilt it forward. The water

will pour out of its spout into the cup. Imagine that you keep the jug tilted rotate it around its vertical axis. The water

will continue to pour into the cup, but from the side of the jug. All is well (if a little unconventional).

Now imagine that you performed those rotations in a different order. Imagine that you start by rotating the jug around

its vertical axis. The spout is now pointing away from you, and not at the cup. If you now tilt the jug, the water will spill

on the table. This is probably not good.

Direction of rotation

In the Cube example above, the cube model was rotated through -60° around the y-axis. How do you know if that is a

clockwise or a counter-clockwise rotation?

The second “right-hand rule” helps here. Stick out the thumb of your right hand and curl the fingers. Imagine that your

thumb is pointing in the direction of the axis of rotation. Now turn your hand in the direction that your fingers are

pointing. That is the direction of a positive rotation.

The right-hand rule for rotation

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf2.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf4.html

30ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Scaling a model

When you create the models for a project, it makes sense to create them all to the same scale. Sometimes, however, you

may want to use models that were originally created for different projects at different scales. Alternatively, you may

want to make an object shrink or grow. One example is a 3D progress bar that you want to stretch along one dimension

but not along the others.

You can use the scale() command to change the scale of a model. The movie Transform.dir does not illustrate a change

of scale. You can find an example setting the scale of a transform in “Using a parent to change the frame of reference

of a 3D object” on page 30.

Order of execution

You can perform the following actions on a model (and by definition, on its transform):

• translate()

• rotate()

• scale()

The order in which you perform the operations is important. If you walk forward three paces and then turn left, you

will be in a different place than if you turn left and then walk forward three paces. If you scale up to 10 times your

original size before you start take three paces, you will go much further than if you take three normal paces, and then

scale up to 10 times your original size.

Frame of reference for a movement

When considering a movement, you must also consider the frame of reference.

Imagine a model named “Car” in a 3D cast member named “Street Scene”. Imagine that the Car model has been

rotated through 90° with respect to the world, so that the Car's z-axis is parallel with the world's x-axis. Imagine that

the z-axis of the car model points from the rear of the car towards its front. This statement will make the car move 30

units in the direction of its own z-axis.

 member("Street Scene").model("Car").translate(0, 0, 30, #self)

This might make the car seem to drive along the street. The next statement, however, will move the car in the direction

of the world's z-axis:

 member("Street Scene").model("Car").translate(0, 0, 30, #world)

This is perpendicular to the direction in which the car is pointing. The car will move sideways. It is a very useful (but

unrealistic) way to park the car in very tight parking spot.

Using a parent to change the frame of reference of a 3D
object

Every model has an origin point. This corresponds to the point vector(0, 0, 0) in the model's resource space. When

you translate, rotate or scale a model, the change is made with respect to the origin point.

Sometimes you may want to rotate or scale a model around a different point. To do this, you can make the model the

child of a different node, and then apply your changes to the parent node.

To see an example of this, download the movie GroupParent.dir and launch it.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf3.html
http://www.adobe.com/support/director/examples/Transform.dir
http://www.adobe.com/support/director/examples/GroupParent.dir

31ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The GroupParent.dir movie creates a box model, raises it by 25 units, then scales the model around its origin point

The code in the GroupParent.dir movie is quite complex. You do not need to understand all the code at this time. In

simple terms, the following is what the movie does when it starts:

• Create a horizontal plane at the height where y = 0

• Create a cubic box model whose sides are 50 units long

• Raise the Cube model by 25 units, so that its base is on the horizontal plane where y = 0

• Change the scale of the Cube

Note: This movie uses the default shader with the default red and white texture for both the plane and the Cube model.

The previous movies in this section used an altered version of the default shader to create a luminous wire frame. You can

learn more about shaders in “Using a shader to change the appearance of a model” on page 34.

Scaling

When the Cube is first created, the value of the scale property of its transform is vector(1.0, 1.0, 1.0). This

means that 1 unit in the model resource space is equivalent to 1 unit in world space, along all axes.

The scale of the cube is then reduced to vector(0.3, 0.3, 0.3). This means that the sides of the model are now

only 15 units long. The center of the model is 25 units above the plane, so there will be a gap between the bottom of

the cube and the plane.

Note: You can use the three values of the scale vector to change the scale in different proportions along the different axes.

Imagine a box model resource that is 50 units wide, 50 units high, and 50 units long. Imagine a model created from this

resource, and that the model's transform has a scale value of vector(1.0, 2.0, 0.5). This means that the model will

be 50 units wide, 100 units high, and 25 units long.

Moving the Cube

If you click on the plane in the GroupParent.dir movie, the origin of the Cube model will move to the point where you

clicked. The cube model is now cut in half by the plane model. Its position relative to the plane changed.

Imagine that you want the Cube to sit on the surface of the plane at all times. In other words, you want it to move and

scale around a point in the center of its base. You can do this by creating a group object and setting it as the parent of

the Cube.

Setting the parent of a model to a custom group

In the beginSprite() handler, after the cube is created and placed at the world position vector(0, 25, 0), the

following two lines of code are executed:

32ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

 -- Create a group to act as the parent of the cube
 vGroup = p3DMember.newGroup("Cube Base")
 vGroup.addChild(vCube, #preserveWorld)

By default, the new group will be created at the center of the world, at vector(0, 0, 0). This vector now corresponds

to the center of the base of the Cube. Instead of moving and scaling the Cube, you can now move and scale the

group(“Cube Base”). This requires a small change in the code of the Group as Parent behavior.

Find these lines:

 --===--
 -- MAKE CHANGES HERE --
 -- Prepare to move the cube... or the group
 pMovableNode = vCube
 --pMovableNode = vGroup -- REMOVE THE FIRST TWO -- CHARACTERS
 --===--

Change these lines to:

 --===--
 -- MAKE CHANGES HERE --
 -- Prepare to move the cube... or the group
 --pMovableNode = vCube
 pMovableNode = vGroup -- REMOVE THE FIRST TWO -- CHARACTERS
 --===--

Now restart the movie and watch the cube as its scale changes. Click on the plane model, and drag the mouse pointer

around.

If you move and scale the Cube Base group, the Cube will remain sitting on the plane

This technique consists of three steps:

1 Creating a group.

2 Placing the group at the position that you want to use as the new origin point for the model.

3 Making the model a child of the group.

In this movie, step 2 was achieved by moving the model rather than by moving the group. See addChild() for more

information on the options for step 3.

Note: For more information on detecting the model under the mouse pointer, see “User interaction” on page 240.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfc.html

33ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Using a parent to group several objects together

You can use any node as the parent of any other node. Cameras, lights, models and groups can all have child objects.

A child node can not have more than one parent. A parent node can have any number of child nodes. Any change

made to the transform of the parent node will affect all its children.

A parent node can have children that have children of their own.

To see an example of this, download the movie ParentChildren.dir and launch it.

The ParentChildren.dir movie creates a contraption out of three models that move around as a group

The Multiple Children behavior creates the following models:

• A horizontal plane

• A cube

• A cone

• A hemisphere

• A group

The node hierarchy is set up as follows:

Drag the mouse pointer around on the surface of the plane. You can see all the children of the group(“Cube Base”)

follow the pointer around. The Hemisphere rotates around its parent Cone while the Cone follows its parent

group(“Cube Base”).

Hierarchy

Each 3D cast member contains a group object called world, which may contain a tree-like parent-child hierarchy of

nodes, such as models, groups, lights, and cameras. Each node may have one parent and any number of children.

Nodes that have world as an ancestor are rendered. A cast member may also contain nodes that do not have world as

an ancestor, such as nodes with a parent property set to VOID. Nodes such as these are not rendered.

group("World") - camera("DefaultView")

- light("UIAmbient")

- light("UIDirectional")

- group("Cube Base") - model("Cube")

- model("Cone") - model("Hemisphere")

http://www.adobe.com/support/director/examples/ParentChildren.dir

34ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The primary benefit of these parent-child relationships is that they make it easier to move complex models around in

the 3D world and to have the component parts of those models move together in the proper way. In the example of a

car, if the wheels of the car are defined as children of the car model, then moving the car will cause the wheels to be

moved with the car in the expected manner. If no parent-child relationship is defined between the car and the wheels,

moving only the car will cause the wheels to be left behind in their original position in the world.

Using a shader to change the appearance of a model

In order to be visible, a 3D model needs to have a shader. A shader provides instructions to the Shockwave 3D

rendering engine on how represent the surface of the model.

A shader is not part of a model. It is a separate object. Many models can use the same shader. Some models can use

more than one shader.

When a 3D designer creates a virtual world in a third-party 3D design application, the designer is likely to apply

attractive shaders and textures to the models before exporting the world as a W3D file. If you are happy with the

appearance of the models in the imported file, you may not need to change the shaders and their textures at all.

All models created in Shockwave 3D by the newModel() function start with the built-in shader:

shader("DefaultShader"). This has a characteristic red-and-white checker pattern.

If you change a shader, the appearance of all the models that use that shader will change. To change the shader for one

model only, you need to create a new shader and apply it to the model.

To see this in action, download the movie Shader.dir and launch it.

The Shader.dir movie creates a new shader, the color of green felt, and applies it to the horizontal plane

The following Lingo code creates a new shader in the cast member named “3D World”. It removes the default

checkered texture, sets the diffuse color of the shader, and applies the shader to model named “Plane”:

 vMember = member("3D World")
 vShader = vMember.newShader("Felt", #standard)
 vShader.texture = VOID -- removes the checkered default texture
 vShader.diffuse = rgb("#147911")
 vMember.model("Plane").shader = vShader

http://www.adobe.com/support/director/examples/Shader.dir

35ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Shader types

When you create a new shader, you must indicate both a unique name for the shader and a type. The following are the

different types of shaders:

• #standard

• #painter

• #newsprint

• #engraver

Standard shader

The #standard shader is the most versatile and the most realistic. Only the #standard shader supports the use of

texture images. The next 3 articles will help you understand the possibilities of the #standard shader.

Painter, newsprint and engraver shaders

The other three shader types create a variety of artificial effects, based on light, shade and diffuse color. You can explore

these using the movie ShaderTypes.dir.

The #painter shader allows you to create scenes that resemble cartoon strips.

http://www.adobe.com/support/director/examples/ShaderTypes.dir

36ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The #newsprint shader allows you to create monochrome images similar to photos in a newspaper.

The #engraver shader gives a similar monochrome image with old-fashioned cross-hatchings.

Interaction with lights

Shaders of the type #standard react to all the lights in the 3D world in a complex way. This is discussed in “Lights” on

page 40.

The other shader types react to lights in a limited way. They will react to the first non-ambient light according to this

order of priority:

1 The #directional light that was added to the world the longest time ago, regardless of its position, or its intensity.

2 The #point or #spot light that shines the brightest on any face of the model, if there are no #directional lights

in the scene. If the brightest light is a #spot light, its #spotAngle and #rotation properties of the #spot light are

ignored.

3 An #ambient light, if that is the only type available.

Shaders of type #painter also react to the color of ambient lights.

Shaders of type #newsprint and #engraver do not react to ambient lights at all, unless there is no other type of light

available. They react to the direction but not to the color of the light with the highest priority, regardless of its type.

You can change the color of the highlight area on a #newsprint or #engraver shader by setting its #diffuse color

property (see the image of the #engraver shader above.)

37ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Using a texture to place an image on the surface of a
model

Each shader can have textures applied to it. Textures are 2D images drawn on the surface of a model. The appearance

of the model’s surface is the combined effect of the shader and textures applied to it. If you do not specify a texture, a

default red-and-white bitmap is used.

To see how to create a new texture object and apply it to a shader, download the movie Texture.dir and launch it.

You can create a texture from an image object or a member with a .image property

This example creates a new texture in the cast member “3D World” to display the image of the bitmap member “Felt

256x256”:

v3Dworld = member("3D World")
vName = "Felt Texture"
vBitmap = member("Felt 256x256")
vTexture = v3Dworld.newTexture(vName, #fromCastMember, vBitmap)

Alternatively, you can create a texture without associating an image to it. You can set the image or member of a texture

at any time:

vTexture = v3Dworld.newTexture(vName)
vTexture.member = vBitmap

Displaying a texture

Textures can be displayed in three different ways:

• As a 2D image projected by the camera, as an overlay or a backdrop

• One each of the particles emitted by a particle system

• As part of a shader object that is attached to a model

For more information on overlays and backdrops, see “Overlays and backdrops” on page 47.

For more information on particle systems, see “Particle emitters” on page 74.

A shader contains 8 layers; a texture can be applied to each of the layers. You can adjust the settings of the different

layers to create different effects, such as surface texture, reaction to diffuse light, reflections that appear to come from

the environment, variations in the shininess of the surface and highlights. For details on how textures interact with the

various shader layers, see “Standard shaders” on page 131.

http://www.adobe.com/support/director/examples/Texture.dir

38ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The following example sets the texture used by the first layer of the shader “Felt Shader” of the cast member “3D

World”:

 v3DMember = member("3D World")
 vShader = v3DMember.shader("Felt Shader")
 vTexture = v3DMember.texture("Felt Texture")
 vShader.texture = vTexture

Dimensions of texture images

The pixel height and width of the 2D images that you use as textures must be powers of 2 (that is, 2, 4, 8, 16, 32, and

so on). This is because most video cards scale images to powers of 2. If the image used does not have pixel dimensions

that are a power of 2 (values including 2, 4, 8, 16, and so forth), both rendering performance and visual quality will

decrease.

To see a demonstration of this, download the movie OverlayDemo.dir and launch it.

An image whose dimensions are not powers of 2 results in a poor quality texture

For a badly-sized image, most video cards will automatically redimension the texture so that its height and width are

set to powers of 2. This may reduce the size of the texture (resulting in lower resolution), or it may increase the size of

the texture (resulting in stretching and wasted RAM usage).

Computer memory requirements

All the textures used in a 3D scene must be able to fit in the computer’s video RAM at the same time. If not, Director

switches to software rendering, which slows performance.

Be aware of the limitations of your video RAM and that of your intended audience. Some video cards have as little as

4 megabytes of video RAM. Carefully budget your total texture size when designing your 3D world.

Resources, meshes, and shaders

A model resource is made of one or more meshes. A mesh is one section of a model resource. A model created from a

model resource possesses as many shaders as there are meshes in the resource. These shaders are stored in the model's

shaderList.

To see an example, download the movie MultiShader.dir and launch it.

http://www.adobe.com/support/director/examples/OverlayDemo.dir
http://www.adobe.com/support/director/examples/MultiShader.dir

39ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

A Box primitive has 6 different meshes. You can apply a different shader to each face of a Box model.

The MultiShader.dir movie contains 6 bitmap cast members named “Dice1” to “Dice6”. Each of these bitmaps has a

height and width of 256 pixels (a power of 2). The movie creates six textures, one for each bitmap. It then creates six

shaders, one for each texture.

You can change all the shaders for a model with one statement. In the MultiShader.dir movie, the shaders on all 6 faces

of the Cube model are replaced by the following line:

vCube.shaderList = vShaderList

Note: In the MultiShader.dir movie, the number of pips on a given face of the cube indicates the index number of that

mesh. This allows you to work out the order in which the meshes of a #box primitive are created: back, right, front, left,

top then bottom. This is not the order in which the pips appear on a real dice. Download and launch the movie Physics.dir

to see a realistic simulation of a dice.

Custom handling of the shaderList

In Physics.dir, the resource for the Cube model has six meshes, so the model has a shaderList with six entries. If try to

set the model's shaderList to a list containing fewer than six shaders, the built-in shader("DefaultShader") is

used to fill in the gaps. If you provide a list that contains more than six shaders, the extra shaders are ignored.

You can give all the meshes in a model the same shader by using a custom shortcut. Instead of providing a list for a

model's shaderList, you can provide a single shader. You can try this in the MultiShader.dir movie. Try changing the

second last line of the beginSprite() handler to this:

 vCube.shaderList = vShaderList[1]

Now, run the movie again. You see that all the faces show a single pip. The shader(“Dice1”) is used for all faces.

http://www.adobe.com/support/director/examples/Physics.dir
http://www.adobe.com/support/director/examples/Physics.dir
http://www.adobe.com/support/director/examples/MultiShader.dir

40ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Set a model's shaderList property to a single shader to copy that shader into each slot in the shaderList

Advantage of multiple shaders

Imagine that you want a model of a computer monitor. You can create this model with two separate meshes: one for

the plastic body of the monitor, and one for the screen. This approach allows you to change the shader on the screen

mesh without changing the shader for the body. You can refresh the screen of your monitor efficiently.

When designing a 3D model for a human character, you can use a separate mesh for the skin, the hair, and for each of

the characters clothes. This makes it easy to use the character as a customizable avatar.

Model resources and texture coordinates

An associated technique allows you to map specific points inside a texture to specific vertices of model resource. Your

third-party 3D design software will normally do this for you before you export your 3D world as a W3D file.

For more details on how to do this from within Director, see “Mapping a texture to a mesh resource” on page 150.

Lights

The appearance of a model depends on both the shaders that are attached to it and the lights that are shining on it. The

shader defines what the surface of the model looks like. The lights in a 3D world create an effect of light and shade on

the model. In a static scene on a 2D screen, the variations in light and shade on a model give your brain clues about

the 3D shape of the model.

In the real world, photons of light travel from a light source, and collide with real world objects. Depending on the

wavelength of the photon and the material it strikes, the photon may bounce off and change color. If you can read this,

there are countless photons around you, all moving at the same time.

When a team is making a high-budget computer-animated film, they can afford to simulate the movement of a large

number of photons. Each image of the film may be show for less than 42 milliseconds, but the company can afford to

have multiple state-of-the-art micro-processors working for several minutes to create each image.

In a movie created for Shockwave 3D, you need to rely on the micro-processor in your end-user's computer doing all

it can in less than 42 milliseconds. Shockwave 3D has to take shortcuts. The more realistic you want your scene to look,

the less efficient the shortcuts become.

41ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Virtual light and virtual light sources

Shockwave 3D simulates light in three different ways: ambient light, diffuse light, and specular light. Shockwave 3D

provides you with four different types of light source: ambient lights, directional lights, point lights, and spot lights. It

is important to distinguish between light (the concept) and lights (the sources of light).

Simulated light

Shockwave3D uses a combination of three different techniques for simulating light in a virtual 3D world: ambient

light, diffuse light, and specular light. All three are clever fictions.

Ambient light

It is night and it is dark. You switch on the ceiling light in your room. The room seems to fill with light. Photons bounce

back towards your eyes from every surface in the room. The brighter your ceiling light, the brighter the room appears.

In Shockwave 3D, ambient light is an extreme simplification of the effect of all these photons bouncing around your

room. The concept of ambient virtual light is that every surface in your room reflects the same amount of light,

regardless of the material it's made of or it orientation to the light source. This is blatantly false, but it takes very little

time for a computer to calculate.

Diffuse and specular light

Imagine a glass mirror with a heavy curtain in front of it. Light that falls on the mirror is reflected. Photons bounce off

the mirror like billiard balls bouncing off the edge of a billiard table.

In a virtual world, light that is reflected at a precise angle in this way is called specular light. The more specular light a

model reflects the shinier it will appear.

Light that falls on the curtain is dissipated in all directions. Photons that arrived at the same angle move off in all

directions, like matches that scatter when you drop a box of matches.

In a virtual world, light that is scattered in this way is called diffuse light.

Types of light and computing time

The table below shows what calculations the video card needs to make for every surface for each type of light.

Because it requires the fewest calculations, ambient light is the most efficient. However, if your scene only has ambient

light, everything will look flat.

Diffuse light from directional sources creates highlights and shades. It gives your brain clues about the shape of three-

dimensional objects.

light color surface color angle of incidence angle of reflection

Ambient light Yes Yes

Diffuse light Yes Yes Yes

Specular light Yes Yes Yes Yes

42ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Specular light is the most expensive, in terms of processing time. It makes objects look more real, but it does not make

them look more three-dimensional. If your scene has no specular light, then all objects will look matte. A rough

wooden table looks the same shape as a polished one. Specular light is a luxury. In “Specular Light” on page 130, you

learn how to switch it off.

Light sources

Shockwave 3D provides four types of light source. A light object has a type property which can take one of the four

following values:

• #ambient

• #directional

• #point

• #spot

Ambient Lights

By default, every 3D cast member has one ambient light object: light("UIAmbient"). You generally do not require

more than one ambient light. The ambient light determines how dark the shaded areas will appear. By default, the

UIAmbient light is black. This means that shaded areas will be 100% black. If you increase its brightness, shaded areas

will appear gray. The position and orientation of the ambient light has absolutely no importance.

For more details on Ambient lights, see “Ambient light” on page 123.

Directional Lights

By default, every new 3D cast member has one directional light object: light("UIDirectional"), which is, by

default, white. This gives the maximum contrast between lit areas and shaded areas. The position of a directional light

has no importance. It acts as if its rays travel in parallel from infinity in the direction of the lights negative z-axis (from

positive to negative). Changing the rotation of a directional light will change the way it illuminates each triangular face

of the models in the 3D world.

For the best effects, the ambient light and main directional light need to be of the same color.

For more details on Directional lights, see “Directional lights” on page 124.

Using the Property Inspector to set the default lighting

Select a 3D member or sprite, open the Property Inspector at the 3D Model tab, and make basic adjustments to

light(“UIAmbient”) and light(“UIDirectional”).

43ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Lighting controls for 3D cast members in the Property Inspector

Point lights and spot lights

Point lights and spot lights are more complex than directional lights. A point light occupies a particular point in space,

and sends out light in all directions. You can set a point light's attenuation property so that its brightness decreases

with distance.

A spot light has the same characteristics plus two additional properties: spotAngle and spotDecay. The spotAngle

property sets the angle of the cone of light. The spotDecay property gives you a simple way to make the spot light's

brightness decrease with distance.

Moving a point or a spot light around will change both the angle and the distance from which the light falls on the

nearby faces.

For more details on Point and Spot lights, see “Point lights” on page 125 and “Spot lights” on page 126.

Types of light sources and computing time

The following table shows what calculations the video card needs to make for every surface for each type of light

source:

The more lights you have in a scene, and the more complex those lights are, the slower the movie will run. Adding an

ambient light to a scene has virtually no effect on computation time. Adding a single spot light to a scene can slow

down the playback of the movie noticeably.

color/

intensity

angle of

incidence

specular light light position distance cone

Ambient light Yes

Directional

light

Yes Yes Optional

Point light Yes Yes Optional Yes Optional

Spot light Yes Yes Optional Yes Optional Yes

44ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

To get acceptable results on slow computers, you can use a very limited number of directional lights with their

specular option switched off. See “Specular Light” on page 130 for more details.

The shortcomings of lighting in Shockwave 3D

Shockwave 3D takes a number of shortcuts to create a realistic-looking scene with the least computer processing time.

One critical shortcut is that light passes straight through all models in its path. This has two unrealistic effects:

• Models do not cast shadows on the models around them

• Objects cannot be reflected in mirrors.

Shadows

Your brain relies on information from shadows to determine how close objects are to each other. For situations where

this information is important, Shockwave 3D developers have found workaround solutions. You can find a

demonstration of real-time shadows here.

You can find a tutorial for different technique for creating shadows here.

Mirrors

You can simulate mirrors and other flat shiny surfaces by using strategically placed mirror image models. Here is an

example.

Cameras

Cameras act as windows into a 3D world. Each camera that exists in a 3D cast member offers a different view into it,

and each sprite that uses a 3D cast member uses one of these cameras. You can use the Director 3D behaviors or script

to manipulate camera positions

All 3D cast members have a camera called camera("DefaultView"). This camera cannot be deleted. Each 3D sprite

has one camera whose view fills the entire sprite. The viewpoint from the DefaultView camera is adopted by default

when a sprite is placed on the Stage. This example shows how to access the main camera used by the sprite named “3D”:

 put sprite("3D").camera
 -- camera("DefaultView")
 vCamera = sprite("3D").member.newCamera("Custom View")
 sprite("3D").camera = vCamera
 put sprite("3D").camera
 -- camera("Custom View")

Interface control

You can use the Shockwave 3D window and the Property Inspector to manipulate the DefaultView camera. These

windows do not give you any control over other cameras, even if you change the camera of the sprite. To control other

cameras, you must use scripting.

http://www.noisecrime.com/develop/techdemo/dmx/shadowmapping11.htm
http://inludo.com/developments/tutorials.htm
http://www.noisecrime.com/develop/techdemo/dmx/reflectiontest10.htm

45ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

3D and 2D views

A 3D camera displays all the models visible in its field of view. It can also display 2D overlays and backdrops. Overlays

appear in front of the visible models, backdrops appear behind all the models. For more details see “Overlays and

backdrops” on page 112.

Refreshing the camera view

Every camera has a colorBuffer property. This determines what color to show in areas that are not filled with models,

overlays or backdrops. You can set this background color for all cameras in the 3D cast member through the

Background color chip in the Property Inspector at the 3D Model tab.

When a camera refreshes its view of the world, the render process follows this order:

• Fill view with background color

• Show backdrops

• Render visible models

• Show overlays

To clear or not to clear at render

You can tell a camera not to clear the previous view with the background color. When the 3D sprite next refreshes its

view, it will render the models in their new position on top of the existing view. This can be exploited in different ways:

to create trails (if you use one camera), or to create a skybox effect (if you use multiple cameras).

To see an example of trails, download the movie Interpol.dir and launch it.

Setting a camera's colorBuffer.clearAtRender property to FALSE can create trails.

To see an example of a skybox, download the movie Skybox.dir, , and launch it. You can use the mouse and arrow keys,

and keys I, O, W and S to move the camera.

http://www.adobe.com/support/director/examples/Interpol.dir
http://www.adobe.com/support/director/examples/Skybox.dir

46ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

One camera renders the skybox, then camera("DefaultView") adds its view of the ground as a separate layer.

For details on how to create a skybox, see “Sky box” on page 108.

Multiple cameras

As the skybox example demonstrates, you can show the output of more than one camera at a time in the 3D sprite.

You can also create on inset view from one camera on top of the image from another camera.

Fog

The pastel quality of the main garden scene above is created with fog. There is no fog in the Inset camera, so the colors

are crisper.

In the real world, the air is not perfectly clear. There is dust in the air. Light that reaches you from distant objects is

dimmed by the dust. Objects that are close to you have vibrant colors, but distant mountains seem pale.

For more information on the use of fog with a camera object, see “Fog” on page 111.

Field of view

Our eyes see the world in perspective. Objects in the real world seem smaller the further away they are.

An engineer or an architect needs to create 3D models that indicate precise dimensions. A component at the far end

of a piece of apparatus needs to have the same dimensions as a similar component close to the viewer.

Shockwave 3D provides two different ways of projecting the view from a camera onto the sprite:

• #perspective

• #orthographic

Frustrum

A camera has a blind spot just in front of it. It cannot see anything that is closer than 1 world unit. When a camera is

showing a perspective view, the visible volume is in the shape of a frustrum, or truncated pyramid.

47ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

To see the shape of a camera frustrum for a perspective view, download the movie Frustrum.dir and launch it.

The red shape represents the camera. The colored form represents the volume in which models are visible.

For an orthographic view, the frustrum is box shaped.

Hither and Yon

The hither plane of a camera is like the frame you make with the thumb and forefingers of both hands when imagining

a camera view.

The hither plane of a camera

The camera will ignore everything that is closer to it than the hither plane. The view in the sprite is the view projected

onto that plane. By default, the distance to the hither plane is 1 world unit.

The yon plane of the camera is further away than the hither plane. The camera will ignore everything beyond the yon

plane. By default the distance to the yon plane is over 3.4 x 1038 world units away. If you consider world units to be a

micron, the default yon plane is many galaxies away.

You can set both the hither and the yon distance.

Overlays and backdrops

Backdrops are textures displayed behind of all models appearing in a given camera’s view. Backdrops are drawn before

any of the models are rendered. They are shown in the order that they appear in the camera’s backdrop list. The first

item in the list appears behind all other backdrops and the last item in the list in front of all other backdrops.

Overlays are textures displayed in front of all models appearing in a given camera’s view. Overlays are drawn after all

models have been rendered. As with backdrops, the order in which they are drawn depends on the order in which they

are created.

Unlike models, the position of overlays and backdrops does not change as the camera moves through 3D space. They

appear in fixed positions, as if glued to the screen.

Each camera has its own list of overlays and backdrops to display.

http://www.adobe.com/support/director/examples/Frustrum.dir

48ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

You can use overlays and backdrops to:

• Create a background

• Create a border

• Show static and dynamic text

• Display an interactive button

• Show toolbars

• Display tool tips

• Display callouts

• Create a progress bar

• Design a head-up display

For details on using overlays and backdrops with cameras, see “Overlays and backdrops” on page 112.

Interactions

Like text and field sprites, 3D sprites can receive keyboard focus. Like all graphic sprites, 3D sprites can receive mouse

events. You can interact with a 3D sprite using both the keyboard and the mouse.

To see a demonstration of mouse and keyboard interactions, download the movie DrawOn3D.dir, and launch it.

When you click on a 3D model, Director can tell with precision exactly where you clicked.

Mouse interactions

When you click on a 2D sprite, Director knows exactly which pixel you clicked. When you click on a view into a 3D

world, there are an infinite number of points under the mouse.

Imagine that you point into a crowded scene with a thin laser beam that can pass through anything in its path. The

laser beam can touch many objects along its path.

You can send such a ray into the 3D world, and ask the camera to tell you which objects are in the path of the ray. You

can find more information about this at modelUnderLoc() and modelsUnderLoc().

http://www.adobe.com/support/director/examples/DrawOn3D.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7989.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7988.html

49ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

If there are no models in the path of the ray, the camera gives you the 3D co-ordinates of one of the points in space

that the ray passes through. See spriteSpaceToWorldSpace(). Conversely, you can use worldSpaceToSpriteSpace() to

find where a particular point in space appears on the surface of the 3D sprite.

For more information on detecting which models lie under a particular location in the 3D sprite, see “Picking” on

page 242 and “Pick Action behavior” on page 244.

Dragging

With the help of the functions mentioned above, and some 3D mathematics, you can drag a model around inside the

3D world. To see this in practice, download the movie SnapToCap.dir and launch it.

In SnapToCap.dir, you can drag the sphere around. When it gets close to the cylinder, the sphere will lock in place.

For more information on how to drag models around inside a 3D sprite, see “Dragging” on page 250.

Steering

Another common use of the mouse is to steer a first-person avatar through a scene. You can achieve this in different

ways, including:

• Click on a destination point.

• Move the mouse left or right to turn in that direction, and up or down to move forwards or backwards.

For more information on using the mouse to move around inside a 3D world, see “Steering with the mouse” on

page 221.

Steering with the keyboard

Another standard steering technique is to use the keyboard. Right-handed players with an English-language keyboard

like to keep their right hand on the mouse and use the W, S, A, and D keys to move forwards and backwards and to

turn left and right. Left-handed players may prefer to place their fingers on the arrow keys for the same controls.

To test one approach to steering with the keyboard, download the movie FollowCamera.dir, and launch it.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78f7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7875.html
http://www.adobe.com/support/director/examples/SnapToCap.dir
http://www.adobe.com/support/director/examples/FollowCamera.dir

50ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

In FollowCamera.dir, use WASD or the arrow keys to steer the red cube around the landscape

For more information on how using the keyboard to interact with a 3D world, see “Steering with the keyboard” on

page 224.

Modifiers

Shockwave 3D provides 8 modifiers that you can attach to specific models in a 3D cast member. Modifiers let you

control many aspects of how models are rendered and how they behave. When you attach a modifier to a model, you

can then set the properties for that modifier with script. Depending on the type of modifier you use, setting its

properties can give you fine control over the model’s appearance and behavior.

Appearance modifiers

1 Level of Detail (LOD)

2 Subdivision Surfaces (SDS)

3 Toon

4 Inker

Behavior modifiers

❖ Collision

Animation Modifiers

1 Bones Player

2 Keyframe Player

3 Mesh Deform

51ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Level of Detail (LOD)

In the real world, as objects get further away, the less detail is visible. In a virtual 3D world, faces that are far from the

camera appear tiny. Nevertheless, the computer processor must spend as much time calculating the color of the pixels

for a distant face as for a face close to the camera.

The solution is to simplify the geometry of distant models, so that they have fewer faces. All model resources created

in third-party 3D design software contain data that allows the Shockwave 3D engine to reduce the level of detail on

models far from the camera. You can set the lod properties of the imported model resource directly.

Even when you change the settings at the resource level, the LOD feature acts on the model, not on the resource. Two

models that share the same resource can display different numbers of faces, depending on how close they are to the

camera.

The #lod modifier lets you give individual models their own lod settings, independently of the lod settings for the

shared model resource. To see the #lod modifier in action, download movie LOD.dir and launch it.

The #lod modifier lets you set how aggressively to simplify model geometry as distance from the camera increases

The LOD.dir movie uses a wire frame shader to make the effect obvious. Select a low value for bias, and ensure auto

is checked. Now drag the sphere around. You will see the value of level change as sphere moves closer to away from

the camera.

Note: Models created in Director from 3D primitives do not contain LOD data. There is no advantage to be gained from

adding the LOD modifier to such models.

Subdivision Surfaces (SDS)

While the #lod modifier reduces detail on distant models, the #sds modifier adds geometric detail to models and

synthesizes additional details to smooth out curves as the model moves closer to the camera.

To see the effect of the #sds modifier, download the movie SDS.dir and launch it.

http://www.adobe.com/support/director/examples/LOD.dir
http://www.adobe.com/support/director/examples/SDS.dir

52ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The #sds modifier multiplies the number of faces displayed by a model. This can deform the shape of the model.

The #sds modifier and the #lod modifier behave in contrasting ways. It is not advisable to use both modifiers on the

same model. The results may be unpredictable.

The #sds modifier is best used on models that were created in a third-party 3D design application. If used with models

created from Shockwave 3D primitives, the modifier affects the model resource, and all the models that share that

resource.

Note: If you are using spot lights with a narrow beam, then smaller faces will give a better result. A face will only be lit

correctly if all three vertex points are within the light beam. If the faces are large, compared to the light beam, the beam

may “hit” the center of a face but not its vertices. In this case, the face will not light up at all. See “How faces are lit” on

page 127 for more details.

Toon and Inker

The #toon and #inker modifiers interact with the model's shader. The #inker modifier adds silhouettes, creases, and

boundary edges to an existing model; the #inker properties allow you to control the definition and emphasis of these

properties.

The #toon modifier draws a model using only a handful of colors, resulting in a cartoon style of rendering of the

model’s surface. When the #toon modifier is applied to a model, the diffuse color of the model's shaders will be

respected but many of the other properties of the shaders are ignored. The #toon modifier and the #painter shader

act in similar ways. If you use them both together, the properties of the #painter shader will be overridden.

Experiment to see which of these gives you the most pleasing effect.

Note: The #inker, #toon, and #sds modifiers cannot work together on the same model. If you add one of these modifiers

to a model, any attempt to add one of the others will fail silently.

53ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Collision

The #collision modifier manages the detection and resolution of collisions. It is easy to detect collisions between

models with simple geometry, such as spheres and cubes. Calculating collisions between models with more complex

geometry (bananas or teapots, for instance) requires much more processing time.

The #collision modifier was introduced in Director 8.5. It can handle simple collisions. However Director 11.5

features a much more powerful collision detection system, provided by the Dynamiks xtra extension. See “Physics” on

page 293 for more details.

Bones Player

The #bonesPlayer modifier manages the use of motions by models. The motions managed by the #bonesPlayer

modifier animate segments, called bones, of the model. Bones animations modify the model’s geometry over time.

Motions and the models that use them must be created in a 3D modeling program, exported as W3D files, and then

imported into a movie. Motions cannot be applied to model primitives created within Director. Creating bones

animation in a 3D modeling application can be complex, but it results in more natural-looking movements.

The #bonesPlayer modifier lets you launch one motion at a time on any given model, but you can blend the end of

one motion into the beginning of the next motion in a couple of different ways. To explore this blending feature,

download the movie BonesPlayer.dir, and launch it.

In BonesPlayer.dir, you can experiment with the autoBlend, blendTime and blendFactor settings.

You can queue, play, and pause bone animations, and you can vary the rate at which they are played. You can use

motion mapping to create new motions out of a combination of existing motions, and play these new motions back

using the #bonesPlayer modifier.

Keyframe Player

Keyframe animations modify a model’s transform properties over time. Like all the other modifiers, the

#keyframePlayer modifier can only be attached to a model. Perhaps you want to apply a keyframe motion to a

camera, a light or a group. To do this, you can use a placeholder model with its resource property set to VOID, and

add the camera, light or group is a child of the placeholder model.

You can combine a keyframe animation with a bones animation on the same model. For example, for an animated

character, you can combine a “run in place” bones animation with a “move around the room” keyframe animation.

http://www.adobe.com/support/director/examples/BonesPlayer.dir

54ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Mesh Deform

If you attach the #meshDeform modifier to a model, you gain access to the vertex and face data of the model's resource.

You can use this information to move individual vertex points around. Any changes that you make to a model's

resource via the #meshDeform modifier are visible on all models created from that resource.

To see this in action, download and launch the movie SimpleMeshDeform.dir.

Click on a vertex point and drag it around

The SimpleMeshDeform.dir movie contains two models created from the same model resource. When you move

individual faces on one model, you see the effect duplicated on the other.

Notice that you can only drag the gray outside faces of the octahedron. The red faces (lit by a point light at the center

of the shape) face “backwards”. Backward-facing polygons are not detected by the modelsUnderRay() function.

Although the red light is inside the octahedron, the internal faces continue to glow red, even when they are turned to

face outwards. This is because lighting is applied to the faces in their original orientation, even after the model's mesh

has been deformed. See “Manipulating a mesh resource” on page 182 for details on how to adjust the lighting effects.

Motions

A motion represents a predefined animation sequence that involves the movement of a model or a model component.

Original motions must be authored in your 3D-modelling application. With Director, you can combine existing

motions to create new motions, but you cannot create a motion from scratch.

Individual motions can be set to play by themselves or with other motions. For example, a running motion can be

combined with a jumping motion to simulate a person jumping over a puddle.

You can create a reference to a motion by using the motion property of the 3D cast member object. You can identify

an individual motion by its name or by its index position in the list of motions.

http://www.adobe.com/support/director/examples/SimpleMeshDeform.dir

55ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

With the #keyframePlayer modifier and the #bonesPlayer modifier, you can use a set of motions authored in your

3D-modeling application. For bones animation, each motion contains a list of tracks, and each track contains the

keyframes for a particular bone. A bone is a segment of the skeleton of a model. For example, track 14 of the motion

named Run can be named RtKneeTrack and move a bone named RtKnee. These names are defined in the 3D

modeling application.

• Play list: The Keyframe and Bones players manage a queue of motions. The first motion in the play list is the motion

that is currently playing or paused. When that motion finishes playing, it’s removed from the play list and the next

motion begins.

Motions can be added with bonesPlayerOrKeyframePlayer.play("motionName"), which adds the motion to

the top of the list, or bonesPlayerOrKeyframePlayer.queue("motionName"), which adds it to the end of the list.

Using the play method starts the motion immediately. The motion previously at the beginning of the play list is

halted unless autoBlend is turned on. When you use queue(), the motion is added to the end of the play list.

Motions are removed from the play list automatically when they are complete. You can remove them explicitly by

using bonesPlayer.playNext().

• Motion blending: If autoblend is TRUE, a motion that is coming to an end blends smoothly into the next motion.

You use the bonesPlayerOrKeyframePlayer.blendTime property to determine how long the blend should be. If

you set bonesPlayerOrKeyframePlayer.autoBlend to FALSE, you can then use

bonesPlayerOrKeyframePlayer.blendFactor to control the blend frame by frame.

• Motion mapping: You can create new motions by combining existing motions. For example, a walking motion

could be combined with a shooting motion to produce a walk-and-shoot motion. This is available only with Bones

player animations.

You can add the Keyframe player modifier at runtime to a model created in Director, but you cannot add the Bones

player modifier at runtime. The Bones player modifier is automatically attached to models with bones animation

exported from a 3D-modeling application. Since the required bones information cannot be assigned in Director, it has

to exist before the model is imported into Director.

Physics

The Physics Xtra is a high-performance tool that helps developers create 3D worlds in which objects interact. The Xtra

performs calculations to determine the results of collisions, factoring in object properties such as mass, velocity, and

rotation. Forces can be applied, and objects can be connected to each other with constraints. The constraints available

are 6 degree of freedom joints, linear joints, angular joints, and spring joints.

Additionally, terrains and raycasting are supported. A terrain is similar to a bumpy plane that is finite in two

dimensions and defines an elevation along the third. Raycasting is the mechanism of collision detection with rays.

Raycasting can be done against all types of rigid bodies and terrains.

With this Xtra, developers can focus on game play and user interaction, and not worry about creating a real-time

physics engine with Lingo scripts.

The Physics (dynamiks) Xtra is a fully integrated rigid body physics simulation engine for Adobe® Director®. The

dynamiks Xtra is supported on Windows and MAC platforms.

For a simple demonstration of some of the potential of the Physics Xtra, download the movie Physics.dir and launch it.

http://www.adobe.com/support/director/examples/Physics.dir

56ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

The Physics.dir movie simulates rolling a gaming dice

The Physics.dir movie demonstrates many of the features discussed earlier in this section, including:

• Defining a 3D shape

• Placing nodes in virtual space

• Using a shader to change the appearance of a model

• Using a texture to place an image on the surface of a model

• Lights

• Camera

• Overlays and backdrops

• Using raycasting to detect which model is at a particular location

• Using a modifier (MeshDeform)

If you can understand the principles that are used in this movie, you are ready to start exploring 3D scripting. You are

ready to create interactive virtual worlds of your own.

Review

Inside a 3D sprite, you see colored pixels. The color of these pixels is calculated to give you the illusion that a 3D world

of solid objects exists. The solid objects, or models, are defined as a collection of triangular faces. The geometry for these

faces is stored in a model resource. Multiple models can be created from one model resource.

Models can be positioned, rotated and scaled in 3D space. A set of complex lighting algorithms determines the color

and shading for each individual face of each model. These algorithms take into account:

• The geometry of the model resource

• The position and orientation of the model in space

• The shaders, textures and appearance modifiers that have been applied to the model

• The orientation, position and distance of each light source

• The placement of the camera

Models can be grouped together in parent-child relations. They can be animated by both keyframe and bones motions.

To make models appear to be solid objects in a world that obeys the laws of physics, you can apply a variety of physical

characteristics to the models.

57ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

You can interact with the 3D world through the keyboard and the mouse.

A virtual 3D world is far less complex than the real world, but you get to make all the rules. The limits of what you can

create in a virtual world depend only on your imagination.

3D output

Director can output 3D content in three different ways:

• Render a 3D world to the computer screen. See “3D Renderers” on page 57. On some computers, you can benefit

from hardware antialiasing. See “3D Anti-aliasing” on page 57.

• Save changes that you make to a 3D world inside Director. See “Saving the 3D world” on page 58.

• Export the current state of a 3D world to an external W3D file. See “Saving the 3D world” on page 58.

3D Renderers

Shockwave 3D relies on the 3D rendering technologies present on your video card. If no hard-ware accelerated 3D

rendering is available, you can use the built-in #software renderer. This is slower and not as sophisticated as hard-

ware based technologies.

You can use the getRendererServices().rendererDeviceList to determine what renderers are available on the client

machine.

This returns a list of symbols. The contents of this list determine the range of values that can be specified for the

renderer and preferred3DRenderer properties. This property can be tested, but not set.

This property is a list that can contain the following possible values:

#openGL specifies the openGL drivers for a hardware acceleration, which work with both Mac and Windows

platforms.

#directX9 specifies the DirectX 9 drivers for hardware acceleration that work only with Windows platforms.#auto

sets the renderer to DirectX 9. In Mac-Intel, only #OpenGLrenderer is available.

#directX7_0 specifies the DirectX 7 drivers for hardware acceleration, which work with Windows platforms only.

#directX5_2 specifies the DirectX 5.2 drivers for hardware acceleration, which work with Windows platforms only.

#software specifies the Director built-in software renderer, which works with both Mac and Windows platforms.

3D Anti-aliasing

In Adobe Director 11.5.8, hardware anti-aliasing is supported in the Shockwave 3D asset. The antialiasingMode

property can be set for anti-aliasing the 3D Sprites.

The antialiasingMode property supports the following options:

• #default (no anti-aliasing)

• #multisample2x

• #multisample4x

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bab.html

58ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

• #multisample8x

• #multisample16x

For more information, see “Antialiasing” on page 390

Saving the 3D world

Changes made to the 3D world can be saved in authoring and projectors. The saved world can be reused as a new cast

member. You must save the Director movie for the changes to the 3D world to get effected. Saving

To save changes to an internal 3D cast member while authoring use the member3D.saveWorld() method. This does

not save the changes immediately: you then need to save the movie. The saveWorld() method simply marks the

member as edited. Its modified state will be written to the movie file when the Director movie is saved.

To create an external W3D file while authoring or from a projector, use the member3D.savew3d() method.

Note: Overlays and backdrops will not be saved with the 3D world. These are runtime properties of a particular camera.

The code that creates overlays and backdrops must be executed each time you want to display them in your 3D sprite.

3D text

You can easily create 3D text in Director.

1 Create a normal (2D) text cast member.

2 Convert the text to 3D by selecting 3D Mode from the Display menu on the Text tab of the Property Inspector.

3 Set properties of the 3D text by using the 3D Text tab to manipulate the specific properties of the 3D text.

You can also manipulate the text cast member with script or a behavior. For more information, see “Creating 3D text”

on page 59.

To see an example, download the movie 3dText.dir and launch it.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68df.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68e0.html
http://www.adobe.com/support/director/examples/3dText.dir

59ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

You can create a rotating logo in Shockwave 3D with no knowledge of scripting

extrude3d()

An alternative solution is to use the textMember.extruder3d() function to create a model resource inside a 3D cast

member.

Creating 3D text

To create 3D text, first create 2D text, and then convert the text to 3D.

1 Select Window > Text to open the text editor.

2 Select the desired font, size, style, and alignment. Most standard fonts work well with 3D text. Experiment to get

specific results.

3 Enter the text. (You can edit the text after you have entered it).

4 Drag the text cast member onto the Stage. Either drag the cast member from the Cast window, or drag the Drag

Cast Member button next to the Name text box in the Text window.

5 Click the Property Inspector button in the Director toolbar.

6 Click the Text tab in the Property Inspector.

7 Select #mode3d Mode from the Display menu.

The text on the screen changes to 3D. See “Modifying 3D text” on page 60 for next steps.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bdc.html

60ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Modifying 3D text

After your 2D text has been changed to 3D, you can modify it.

1 Click the Property inspector 3D Extruder tab.

2 Set the camera position and rotation. As with the standard 3D Property inspector tab, you control camera position

and rotation with the values that you enter in the text boxes at the top of the pane. The default camera position

represents a vantage point looking up through the middle of the scene.

Note: You can also define these settings by using the Shockwave 3D window. Use Window > Shockwave 3D, then use

the Next Cast Member and Previous Cast Member buttons to locate the 3D Text member that you want to work with.

3 Select from among the Front Face, Back Face, and Tunnel check boxes. These options control which sides of the

text appear.

4 Set the smoothness. Smoothness determines the number of polygons that are used to construct the text. The more

polygons that are used, the smoother the text appears.

5 Set the tunnel depth. Tunnel depth is the length of the tunnel from the front face to the back face.

6 Select a beveled edge type. Beveling makes the edges of the 3D letters appear rounded or angled. Select Round for

rounded edges or Miter for angled edges.

7 Select a bevel amount. Bevel amount determines the size of the bevel.

8 Set up the lighting. Select a color and position for the text’s default directional light. A directional light is a point

source of light and comes from a specific, recognizable direction. You can also select a color for the ambient and

background lights in the 3D world that the text occupies. Ambient light is diffuse light that illuminates the entire

world. Background light appears to come from behind the camera.

9 Apply a shader and a texture. Shaders and shader properties determine the appearance of the surface of the 3D text

model. Textures are 2D images drawn on the surface of the text. Use the Property inspector to assign a texture to

the text’s shader. You can also control the color of the shader’s specular highlights and its diffuse or overall color

and reflectivity.

As with any model, you can apply a texture that uses a bitmap cast member. You can import a bitmap cast member

or create a new one in the Paint window. Be sure to give your bitmap cast member a name if it does not already have

one. To assign this bitmap as the texture, specify it in the Property inspector. Select Member from the Shader

Texture menu, and then enter the name of the member you want to use in the text box to the right of the menu.

Script and 3D text

Director contains methods and properties in Lingo and JavaScript syntax for working with 3D text. Most 3D methods

and properties work with 3D text exactly as with any other object. Properties are also described in the Scripting

Reference topics in the Director Help Panel.

However, there are some standard text properties that cannot be applied to 3D text. You can find a list of these at

“Exceptions” on page 61.

On the other hand, model resources created from 3D text have additional properties that are not available to ordinary

3D model resources. You can find these listed at “Lingo and JavaScript syntax script for 3D text” on page 62.

61ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Exceptions

The following methods and properties work differently when used with 3D text.

Type of Script Element

Member property antiAlias

Member property antiAliasThreshold

Member property antiAliasType

Member property picture

Member property preRender

Member property scrollTop

Member property useHypertextStyles

Member property autoTab

Member property boxType #scroll

Member command scrollByPage

Member command scrollByLine

Member function charPosToLoc

Member function linePosToLocV

Member function locToCharPos

Member function locVToLinePos

Sprite property editable

Sprite function pointInHyperLink

Sprite function pointToChar

Sprite function pointToItem

Sprite function pointToLine

Sprite function pointToParagraph

Sprite function pointToWord

Hypertext Lingo hyperlinkClicked

Hypertext Lingo hyperlink

Hypertext Lingo hyperlinks

Hypertext Lingo hyperlinkRange

Hypertext Lingo hyperlinkState

62ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Lingo and JavaScript syntax script for 3D text

In addition to working with most existing methods and properties, 3D text also adds some properties of its own. These

properties give you a more precise way to define the characteristics of the text than is possible using the Property

Inspector.

These properties can be set while the text is in 2D mode. They have no visible effect until the text appears in 3D mode.

When you access the properties listed in the following table for an extruded 3D text model that you created by using

the extrude3D() method, you must refer to the model resource of the text. The Lingo syntax for this is shown in the

following example:

member(whichMember).model[modelIndex].resource.3DTextProperty

For example, to set the bevelDepth property of the first model in cast member 1 to a value of 25, use the following

syntax:

member(1).model[1].resource.bevelDepth = 25

Properties of extruder resources for text

Note: The properties in the table above can be applied either to the extruder resource in a Text member in 3D mode, or

to an extrude resource created in a 3D member by the textMember.extrude3d(member3D) function.

Property of Text members

Property Access Description Range or Default

bevelDepth Get and set Degree of beveling on

front or back faces.

Floating-point value from 1.0 to 100.0

Default is 1.0

bevelType Get and set Type of bevel. #none

#miter

#round

Default is #miter for 3D text in a Text

member and #none for extruder resources

in a 3D cast member.

displayFace Get and set Faces of shape to

display.

#front

#tunnel

#back

Default is to show all three faces

smoothness Get and set Number of

subdivisions for

curved outlines.

Integer from 1 to 100

Default is 5

tunnelDepth Get and set Extrusion depth. Floating-point value from 1.0 to 100.0

Property Access Description Range or Default

displayMode Get and set Specifies how the text

appears.

#modeNormal

#Mode3D

Default is #modeNormal, which is 2D text.

63ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

3D Method for Text members

Adding a text model to a 3D cast member

To add 3D text to a 3D cast member, you can use the textMember.extrude3D() method. This creates an extruder model

resource inside the 3D cast member of your choice. Each character in the text member is converted to a separate mesh

inside the extrude resource. This means that you can apply a different shader to each letter.

Note: You have to apply different shaders manually.

To see an example of this, download the movie 3dExtruder.dir, , and launch it.

The extruder3d() command creates an extruded text model inside a 3D world

The extruder model resource possesses the same properties as the text in a 3D text member. See “Lingo and JavaScript

syntax script for 3D text” on page 62for the full list.

Text in overlays and backdrops

If you want to display 2D text in a 3D sprite, you can create a texture from a bitmap or a text member, and display that

as an overlay or backdrop of a camera. The process for doing this is quite different from the process for creating models

in the shape of 3D text.

 See “Text in overlays and backdrops” on page 116 for more information.

Sources of 3D content

Primitives

Models are the objects you see in the 3D world. You can create models within Director. Spheres, boxes, planes,

cylinders, and particle systems can be created either with Lingo or JavaScript syntax or with Director behaviors. These

simple shapes are called primitives. They are the basic shapes from which more complicated models are built.

member("text member").
extrude3d(member("3D member"))

Creates a new model resource in member "3D world" by extruding

the text in member "text member".

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bdc.html
http://www.adobe.com/support/director/examples/3dExtruder.dir

64ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Particle systems are different from the other primitives. Instead of being shapes, they create cascades of moving

particles. You can also create mesh primitives, which allow you to define any kind of complex shape you wish. You can

create extruder resources from text members, to add 3D text to the scene in your 3D cast member.

3D modeling applications

For the most part, you should create complex models outside of Director, use a 3D modeling application, and then

import them into Director in the W3D file format.

Model resources defined by a W3D file imported into Director or loaded through a script have a type value of

#fromfile. File-defined resources are automatically assigned level of detail (LOD) modifier settings that allow models

using those geometries to adjust their level of detail as needed, depending on the model’s distance from the camera.

For more information, see “Level of detail (LOD) modifier” on page 193.

Combining sources

You can build a world in a single 3D cast member from multiple sources. For example, imagine a 3D cast member

called "World" containing all the models for a particular scene, and other 3D cast members, each containing one

animated character. You can clone the models and animations from the character cast members into the "World" cast

member. You can create a custom sign from basic primitive shapes and extruded text that you generate from the end-

user's own text input. You can add particle models to create flames and smoke and fireworks. The final scene can be

much more than the sum of the parts.

External 3D Files

If you have access to third-party 3D design software, or a 3D designer, then the easiest way to create animated 3D

content for your movies is as a W3D file. At the time of writing, the following software packages export to the W3D

format:

• Autodesk's 3ds Max (32-bit install) is commonly used to model and export to W3D format.

For high-quality character animation, one workflow is to start in Autodesk's Motion Builder, then to export the

output in the FBX file format to 3ds Max (32-bit). Finally, you can export the animated character as a W3D file.

• NewTek's LightWave 3D

Converting to W3D

If your 3D design software package does not export to the W3D format, you can export to OBJ format, and then use

the OBJ Converter (Windows only), to convert to W3D.

Other alternatives include:

• Right Hemisphere's Deep Exploration (no support for animations)

• Okino's Shockwave-3D Exporter (Windows only)

• Okino's Poly-trans Xtra (Windows only), which allows you to control the 3D Exporter from within Director.

• awaW3DTrans Xtra (Mac Intel and Windows)

• Sw3dC (Mac OS 10.6 and later, Windows XP and later)

http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13567410
http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13581855
http://www.newtek.com/3DA/systemspecs.php
http://download.macromedia.com/pub/director/obj/win/obj_converter.zip
http://www.righthemisphere.com/support/downloads/download.php
http://www.okino.com/conv/exp_sw3d.htm
http://www.okino.com/conv/pt4director.htm
http://www.eee-craft.com/director/awaW3DTrans/
http://www.eee-craft.com/sw3dc/

65ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Linked or imported W3D files

You can either import your W3D files as internal 3D cast members, or link to the external file. Linking a cast member

to an external file makes it easy to update the file.

During development, your 3D design team can continue to work on the scene and the animations, and you can simply

replace the external W3D file with the latest version.

Changes you make to the defaultRect and regPoint properties of the 3D cast member will be maintained when you

replace the linked external file. Other settings, such as default camera position, background color, and lighting are read

from the external file.

If you choose to import the W3D file, and the 3D designer makes changes to it, then you have to re-import the new

version of the file. In such a case, all changes made to the 3D cast member will be lost.

Loading from external files

In many cases, you have to store models for your 3D world in several separate files. For example, you can save the

geometry for the 3D scene in one W3D file and the animated characters in separate 3D files.

The loadFile() command allows you to copy the entire contents of an external W3D file into a 3D cast member. The

following examples copies all the models, resources, groups, textures, shaders, and motions from the

"WhiteKnight.w3D" file into the 3D cast member "Dark Castle", without replacing the existing objects:

vFile = "USBKey:3D:WhiteKnight.w3D"
vReplace = FALSE
member("Dark Castle").loadFile(vFile, vReplace)

SketchUp

Using Google SketchUp, you can create 3D models from scratch or customize models created by others. The Google

3D Warehouse is one such online repository from where you can download and use SketchUp models.

Note: In 3D worlds, created in SketchUp, the world axes are rotated differently from a 3D world created in Director. In

native Director 3D cast members, the y-axis points upwards. In a 3D world created in SketchUp, the z-axis points

upwards. When you use the Shockwave 3D window to view a SketchUp world, remember to click on the Camera Z Up

button before rotating the world.

After a SketchUp model is imported into Director, it can be used like any other Shockwave 3D (W3D) file. You can

apply all available 3D and Physics properties in Director to the imported model.

Import a Google SketchUp model

1 Click File > Import.

2 Select the SketchUp model in the Import Files dialog box, and click Import. Google SketchUp model files have a

.skp extension.

By default, the Google SketchUp model is imported and stored as a cast member inside the Director movie file.

Alternatively, choose Link To External File from the Media pop-up menu to import the SketchUp model as an

external W3D file. An updated copy of this external W3D file is imported to the cast every time you run the movie.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7d86.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c2a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bdb.html
http://sketchup.google.com/3dwarehouse/
http://sketchup.google.com/3dwarehouse/

66ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

If you choose Link to External File, you will be prompted later to provide a path for the converted W3D file

3 In the Import Options dialog box, specify whether you want to import the hidden groups and layers in the model.

The hidden groups and layers in the Google SketchUp model remain hidden even after they are imported into

Director.

Note: To unhide a model, set the model's visibility to front using model(hiddenModel.visibility=#front). To

unhide invisible faces in a model, use model(modelRef).shader(shaderRef).transparent=0 to set the

transparent property of the shader corresponding to the faces to 0.

4 Specify if the model has two-sided faces. Director imports the two-sided faces in the model as two front-facing

meshes.

Note: If you do not select the Faces Are Two-Sided option, Director imports only the front faces of the SketchUp model.

Information about the back faces is ignored. This may lead to some objects being invisible from certain angles.

5 Specify how Director should import the hierarchy of groups in the Google SketchUp file. The SketchUp file can

have multiple models arranged as nested groups.

Original Preserves the original hierarchy. The groups and models in the Google SketchUp file are replicated in the

W3D file.

Collapsed Models that belong to the same group in the SketchUp file are collapsed into a single model in the W3D

file. Any groups in the hierarchy are ignored during import.

Flattened Creates a one-to-one mapping of models between the SketchUp and W3D files. Any groups in the

hierarchy are ignored during import.

Single Model Imports all groups and models in the SketchUp file as a single model in the Director W3D file.

1 Select the textures in the Google SketchUp model that you want to import.

Import Used And Unused Imports all textures in the SketchUp file.

67ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Import Used Imports only the textures used by the SketchUp model.

None Textures in the SketchUp file are not imported.

2 Enter the desired compression level for the imported geometries in the Geometry Quality box. By default, Director

compresses the imported geometries to 75% of their original quality.

3 If you chose to import the model by reference as an external W3D file, enter a name for the file in the Create

External Link box. This external file is imported afresh to the cast every time you run the movie.

The Create External Link check box will be disabled. Its state will depend on the choice you made at step 2

4 Click OK.

Import models through scripting

While authoring a movie, you can also import a Google SketchUp model into Director using the importFileInto()

method.

• Use the following syntax to import the model as a cast member inside the Director movie:

member("some3dMember").importFileInto("anypath", [#Linked: 0])

• To import the model by reference (Link To External File), set the value of the Linked property to 1 instead of 0:

member("some3dMember").importFileInto("anypath", [#Linked: 1])

The SketchUp Import Options dialog will open. See steps 3 - 9 above for details.

You cannot import a SketchUp file at runtime. The SketchUp importation process can only be performed in the Director

authoring application. If you want to link to external files containing content available as SketchUp files, you can select

Link to External file when importing, as described above. If you have already imported the file internally you can:

1 Use saveW3D() to export the file in W3D format.

2 Link to the exported W3D file in the usual way.

Cloning from other 3D cast members

If you are creating a very simple 3D world, you may choose to place all your models, motions and other objects in a

single W3D file. In many cases, however, you may choose to export your 3D content in a series of separate W3D files.

You can use the loadFile() command to load the entire contents of an external W3D file into a 3D cast member.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68e0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bdb.html

68ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

If you are using linked or internal 3D cast members, you can have finer control of which objects you copy from one

3D cast member to another, or within a single 3D cast member. The following are the "clone" functions:

• node.clone() creates a copy of a model, group, light, or camera, and all its children. Any model resources and

shaderLists used by the copy are identical to those used by the original. No new model resources, shaders, or

textures are created.

• node.cloneDeep() copies the node and all its children, just like the clone() function, but it also creates a duplicate

of all model resources, shaders, and textures used by the node or its children. This is useful if you want to modify

these duplicate objects while leaving the original models unchanged.

• member3D.cloneModelFromCastmember() acts like cloneDeep() for a model, except that it copies the model and

all its associated objects from one 3D cast member to another.

• member3D.cloneMotionFromCastmember() copies a motion from one 3D cast member to another. You can create

an animated character with all its geometry, textures, and shaders in one W3D file. In separate files, you can save

different motions for the character. In these separate files, you can omit all the shaders and textures, and reduce the

geometry to little more than the bones that are animated by the motion. This will ensure that file size is kept to a

minimum.

Export issues

Your first efforts at exporting to the W3D file format may not work out the way you expect. Many 3D designers

establish a specific workflow that allows them to avoid conversion problems. This section lists the common issues that

you are likely to encounter.

Lights

If there were no lights in the original pre-exported scene, then the W3D file will appear black. This can be simply fixed

by adding a light either in the authoring application or in Director.

If your W3D scene appears empty, check whether it is simply a question of lighting.

Tiling and stretching textures

In 3ds Max, avoid making UVW settings to a texture in the Material Editor. UVW is a standard approach to set up

tiling, stretching, and so on. Unfortunately W3D ignores settings made in the Material Editor. To use UVWs, you need

to add a UVW Map modifier to the model itself and make your settings there.

If the way your texture maps to your model looks different in Director than it did in 3ds Max, check that you used a

UVW Map modifier on the model.

Naming

In a W3D file, every object of a given type must have a unique name. Cameras, groups, lights, and models are all

considered to be nodes. Every node must have a unique name. For example, you cannot have both a camera named

“Main” and a group named “Main”. You can avoid this naming conflict by using a strict naming convention. For

example, you can include the type of node in the name of the node. This gives you the names “Main Camera” and

“Main Group”.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfa.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be5.html

69ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Depending on your 3D modeling application, you may be able to give the same name to different objects of the same

type. Imagine, for example, that you create a leopard model and a zebra model, and that you create a different texture

for each model. Your 3D modeling application may allow you to use the same name (for example “animal skin”) for

both textures. When you export the world as a W3D file, only one of the textures will be exported. The other will be

ignored or overwritten. As a result, either your zebra or your leopard will appear with the wrong texture.

Do not rely on the default names given to objects by your 3D modeling application. If you find that some objects are

missing in your W3D file, check that you are using a rigorous naming convention.

Hierarchy

The W3D exporter may decide to create a single model resource out of several separate models. This can happen for

different reasons:

• If a model is a child of another model, it will become part of the model resource of the parent model not a child of

the model. To avoid this, you can build the main hierarchy only with 3ds Max groups (not to be confused with

Director groups), dummies, and helpers. Any object that is not a mesh in 3ds Max becomes a group in Director.

• If you group models together in 3ds Max, the group is exported as a single model resource. Grouping models can

also cause the exporter to crash if the content is too big or too complex.

Exporting a selection

Your 3D modeling application may propose the option of exporting just the current selection. The W3D exporter is

likely to ignore this option: the entire scene will be exported anyway.

Exporting for the #inker modifier

If you intend to apply the #inker modifier, include extra information during the export process. If you are working

in Cinema4D, enable the option that adds extra information for hypernurbs. If you are working with 3ds Max, then

enable the “toon” export option.

Exporting animated characters

In 3ds Max, bones characters will only be exported correctly if all the bones and meshes are selected and grouped. In

addition, you need to make sure the envelopes covers the meshes entirely.

To animate human-like characters, you can use bipeds. Bipeds work very well in W3D, but in 3ds Max you must apply

a Physique modifier to the biped, and group all bones and geometry into a single group.

Note: You may find that some of the Physique settings are ignored in the exported W3D file.

If you do not add the Physique modifier in 3ds Max, then the bonesPlayer will not be added to your animated biped.

An alternative approach is to use a Skin modifier. This can be used with animation data provided through motion

capture. You can create all animations in 3ds Max using bones, and then:

• Group the mesh and biped

• Apply a Skin modifier to the mesh

• Adjust the weights of the bone’s influence on individual mesh vertices

• Add a transparent dummy (this can be a cube with the rough outer dimensions of the animated mesh)

• Link the mesh/biped to the dummy

This technique allows you to use the dummy to translate and rotate the biped in Shockwave 3D.

70ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Exporting multiple motions

W3D files can contain multiple motions for a given animated character. However, you may find that the W3D exporter

accepts only a single motion per character. One solution is to export a separate W3D file for each motion. You can then

use cloneMotionFromCastMember() to copy the separate motions to the 3D cast member that will be playing back the

scene. See also “Cloning from other 3D cast members” on page 67.

An alternative is to add each motion in sequence to the character's timeline, and then use the millisecond timing of the

start and end of each motion when you want to playback a particular motion sequence.

Exporting hidden objects

If you hide objects in your 3D modeling application before you export the scene, everything is exported anyway.

Hidden objects will be exported as Director groups. Such a group defines a position, rotation, and a scale, but it

includes no geometrical information.

Basic Model Preparation in 3ds Max

1 Create a model, or purchase a model from suppliers, such as, TurboSquid.

2 Convert to polygons if necessary.

3 Create a biped at the same origin point as the mesh, the same height as the mesh (Create > Systems > Biped)

4 Put the biped in figure mode so that you can edit the biped.

5 Get the overall height of the biped right, and then position his hips. Starting from there work outwards using non-

uniform scale to fit the bones to the mesh. Widen the bones so that they nearly cover the mesh, so that they will

influence the mesh when we add the skin modifier.

6 Put the viewport in wireframe and zoom in on the hips. Add a skin modifier to the mesh, click the Attach to Node

button on the rollout, and select the biped’s hips. This will open the skin initializer dialog, so click initialize.

7 Open the skin modifier and select vertex. Marquee select the whole mesh and look for blue vertices. These are not

linked to a bone, so select them and click Assign to Link.

8 Create the dummy, which is a simple transparent cube that you use to translate and rotate the model. The dummy

should be bigger that the mesh, but centered on the mesh center.

9 Go into the hierarchy browser, select both the mesh and biped, and select Group > Group to create a new group

with them as the members. Give the group a good name. (If you do not do so, the mesh does not animate with the

biped in Shockwave, even though it does in Max)

10 After you group, link the group to the dummy. To do so, select the group, and then select the link, and drag into an

area where you only hit the dummy.

Applying motion capture data

Applying motion capture data is really no different for Shockwave3D than for any 3ds Max character. Motion capture

data is a substitute for handmade animation motions, and is usually more fluid and natural than handmade animated

motions, but may sometimes be less efficient at runtime. Motion capture files are available for purchase from many

suppliers.

1 Select the mesh and click Display > Hide > Unhide All to show the biped.

2 Select the biped, Motion > Biped Apps > Figure Mode to take it out of Figure Mode.

3 Motion > Motion Capture > Load File to load the file. Initialize dialog box appears.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be5.html

71ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

4 Select Footstep Extraction > Fit to Existing in initialize dialog box. If you do not do so, your mesh gets reshaped to

fit the motion capture biped from the file.

5 Select the mesh, and click Display > Hide > Hide Unselected to hide the biped.

6 Set the animation length to match the motion capture (little clock icon in the lower right).

Native 3D content

You can create basic geometrical shapes in Director itself, without the need for a third-party 3D design application.

The following are the simple shapes that are available:

• Sphere

• Plane

• Box

• Cylinder

These shapes are called primitives. Using groups and parent-child relationships you can use these simple shapes to

create more complicated contraptions. For an example of such grouping, see “Using a parent to group several objects

together” on page 33. For more information on the various geometrical shapes, see “Regular primitives” on page 71.

The following are the more complicated primitive types:

• Mesh

• Extruder

• Particle emitter

You can use a mesh primitive to define any kind of complex shape you wish. For more details, see “Mesh resources”

on page 72.

You can use the extruder3d() function to extrude a 2D shape into a 3D object. For more details, see “Extruder

resources” on page 74.

Particle systems create cascades of moving particles. See “Particle emitters” on page 74 for more details.

Regular primitives

Shockwave 3D provides four types of primitives with regular geometry:

• Sphere

• Plane

• Box

• Cylinder

The simplest way to explore all the properties of these primitives is to download the movie Primitives.dir, and launch it.

http://www.adobe.com/support/director/examples/Primitives.dir

72ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

In Primitives.dir, use the PI to modify the properties of the different primitive resources

Note: The default dimensions of the #sphere, #box and #cylinder primitives give them a width, height and length of

50 world units. The default size of the #plane primitive gives it a width and a length of 1 unit. The #plane resource's

length property actually determines its height. The #plane primitive is rotated so that it is visible from the default

camera position. To create a horizontal plane, you will need to rotate the model -90° around the world's x-axis.

See “Using a parent to group several objects together” on page 33 for an example of a 3D contraption made from

several primitive models.

Mesh resources

You can create any 3D shape you like using a #mesh resource. Creating a #mesh resource requires the same amount of

concentration as building a model out of matchsticks. To create a #mesh resource, you must provide many different

pieces of information. The minimum information required is:

• The position of each vertex point in the mesh.

• A list of which vertex points are joined together to create each face.

You can also provide information concerning:

• The direction of the normal to the surface at each vertex point.

• The color of each vertex in each face.

• How textures will map to the surface of the mesh.

For each face, you can define a shader. For each shader that your mesh resource uses, the resulting model will have an

additional entry in its shaderList property.

73ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Examples

To see the process of creating a mesh resource in real time, download the movie Lathe.dir, and launch it.

With the Lathe.dir movie, you can define a 2D template and extrude it in a circle around an axis.

Click on the 2D pane on the left to create a new vertex point in a 2D plane, or drag an existing point to a new position.

Press the Delete key to remove a vertex point. You can export a script that you can use create a new model with the

chosen template and settings.

To see an example of a mesh resource with multiple shaders, download the movie Frame.dir, , and launch it.

Frame.dir creates a set of mesh resources with two shaders: one for the frame, one for the picture

Uses of mesh resources

Mesh resource can be used:

• To create a terrain using a bump map

• To create the walls of a building from a floor plan

http://www.adobe.com/support/director/examples/Lathe.dir
http://www.adobe.com/support/director/examples/Frame.dir

74ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

• To create a simple collision wall around more complex geometry

• To create objects with geometry that you can modify on the fly, or for any other purpose where pre-defined models

cannot be used.

Extruder resources

The extrude3d() function is designed to create an #extruder resource from a text cast member. However, you can

change the vertexList property of an #extruder resource after it has been created.

To see an example of this, download the movie Extruder.dir, , and launch it.

You can use a vectorShape member to define the shape of an #extruder model resource

Note: The 2D co-ordinates of a vectorShape member are measured rightwards and downwards, where the 3D co-

ordinates of a model resource are measured rightwards, upwards, and forwards. As a result, the shape of an #extruder

resource appears to be flipped vertically. An #extruder resource has only one mesh. The same shader is applied to both

front and back, and it is smeared along the sides.

You can modify the smoothness, tunnelDepth, , and displayFaces properties of an #extruder resource.

Particle emitters

Particle systems are different from the other primitives. Instead of being shapes, they create cascades of moving

particles. You can use these to simulate dust, clouds, rain, smoke, fire, fireworks, and many other randomly animated

systems of particles.

A particle is simply a square plane that turns to face the camera. You can place a texture on this plane. You can use

transparency in the texture to give it a specific (non-square) shape.

The emitter can be a point, a line, or an area defined by a set of four points in space. The particles can be made to change

size, color, size, and blend over time. You can set the maximum and minimum speed. You can make the particles start

in a given direction, follow a path, drift with a wind, and fall due to gravity. You can make an emitter create a single

burst of particles, like a firework, or produce particles continuously. You can move the emitter about in 3D space,

without moving the model itself.

Experimentation is the best way to find which settings give the results that you are looking for.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bdc.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7cc6.html
http://www.adobe.com/support/director/examples/Extruder.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bb6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bb0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bbd.html

75ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Often it helps to have several particle systems with slightly different characteristics working together. You can find an

example that uses three particle systems and a total of 260 particles to create simulate a fire in the movie Particles.dir.

Smoke can be simulated by a number of slowly drifting and fading particles

Like other primitives, the particle system is created from a model resource and a model. All models that use the same

model resource will show the same particles in the same random states.

3D behaviors

Director includes a library of behaviors that lets you build and control a 3D environment without any knowledge of

Lingo or JavaScript syntax. Although scripting is still required for complex projects, you can build simple 3D movies

with behaviors alone.

Behavior types

Director provides two types of 3D behaviors: trigger and action. Action behaviors are divided into three types, which

are defined in the following table.

Type Function

Trigger behavior A behavior that sends an event, such as a mouse click, to an action

behavior

Local action behavior A behavior that is attached to a particular sprite and that can accept

triggers only from that sprite

Public action behavior A behavior that can be triggered by any sprite

Independent action behavior A behavior that needs no trigger

http://www.adobe.com/support/director/examples/Particles.dir

76ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

In previous versions of Director, the trigger instruction had to be included as a handler, such as on mouseDown, inside

the behavior. The trigger behavior type makes it easier to reuse action behaviors in different ways with different

triggers. These behaviors can be used with any 3D cast member.

Using the 3D behavior library

All 3D behaviors are listed in the Behavior Library. The Behavior Library is divided into two sub libraries: actions and

triggers.

1 Click the Library Palette button on the Director toolbar.

2 Click the Library List button and select 3D.

3 Select Triggers from the 3D submenu.

The trigger behaviors appear.

3D trigger behaviors

The following table describes the available triggers:

Name Description

Mouse Left Triggers action when the user presses, holds down, or releases the left

mouse button (WindowsÂ®) or the mouse button (MacÂ®).

Mouse Right Triggers action when user presses, holds down, or releases the right

mouse button. To use on the Mac, you must set the

emulateMultibuttonMouse property to true; then Control-click is

interpreted as a right-click. To use this with ShockwaveÂ® Player, you

must disable the context menu and pass right-clicks through to the

player.

Mouse Within Triggers an action when the pointer is inside a sprite.

Mouse Enter Triggers an action when the pointer enters a sprite.

Mouse Leave Triggers an action when the pointer leaves a sprite.

Keyboard Input Lets the author specify a given key as a trigger.

77ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

You can add modifier keys to any trigger. By doing so, a given trigger can launch two actions, depending on whether

the modifier key is pressed. For example, you can Mouse Left and Mouse Left+Shift as separate triggers.

View 3D action behaviors

1 Click the Library Palette button on the Director toolbar.

2 Click the Library List button and select 3D.

3 Select Actions from the 3D submenu.

The action behaviors appear, as shown in the following figure:

3D action behaviors

Local actions

When you attach a local action to a sprite, that action responds only to a trigger that is attached to that same sprite.

The following table describes the available local actions:

Name Effect Description

Create Box Primitive Adds a box to the 3D world each time the trigger action occurs.

The author can set the dimensions and texture.

Create Particle System Primitive Creates a particle system whenever the trigger is activated. The

user can set the number of particles; the life span of each

particle; the starting and finishing color of particles; and the

angle, speed, and distribution of particles on emission. The

user can also set gravity and wind effects along any axis.

Create Sphere Primitive Adds a sphere to the 3D world each time the trigger action

occurs. The author can set the diameter and texture.

Drag Camera Camera Provides full camera control, including panning (changing the

direction in which the camera is pointing), dollying (moving),

and rotating, through a single behavior. Use separate mouse

triggers for panning, zooming, and rotating.

Drag Model Model Lets users move a model in any direction by dragging it with

the mouse.

78ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Public actions

As with local actions, you can add public actions to a movie by attaching them to any 3D sprite. Unlike local actions,

public actions are triggered whether the trigger is attached to the same sprite as the action or to any other sprite. Public

actions use the same triggers as local actions. The following table describes available public actions:

Independent actions

Independent actions do not require triggers. The following table describes the available independent actions:

Drag Model to Rotate Model Lets you specify an axis or pair of axes around which you can

rotate a model by dragging the model with the mouse.

Fly Through Camera Simulates flying through the 3D world with a camera. Accepts

separate triggers for forward and reverse travel and for

stopping.

Click Model Go to

Marker

Model Moves the playhead to a marker in the Score when a model is

clicked.

Orbit Camera Camera Circles the camera around a model.

Play Animation Model Plays a preexisting animation when the model is clicked. This

behavior cannot be used with 3D text.

Name Effect Description

Dolly Camera Camera Dollies the camera into or out of the 3D scene by a specified

amount each time the trigger action occurs. Dollying in and

dollying out require separate triggers.

Generic Do Custom Lets you use the standard triggers to launch custom handlers

or execute specific script methods. Requires knowledge of

scripting in Director.

Pan Camera Horizontal Camera Pans along the horizontal axis by a specified number of

degrees each time the trigger action occurs. Panning left and

panning right require separate triggers.

Pan Camera Vertical Camera Pans along the vertical axis (up and down) by a specified

number of degrees each time the trigger action occurs.

Panning up and panning down require separate triggers.

Reset Camera Camera Resets the camera to its initial location and orientation when

the trigger action occurs.

Rotate Camera Camera Rotates the camera around the z-axis by a specified number of

degrees each time its trigger is activated. This makes the 3D

scene appear to rotate and turn upside down.

Toggle Redraw Drawing Toggles the redraw mode on or off. Turning redraw off

produces visible trails as a model moves through space.

Turning redraw on causes the trails to disappear.

Name Effect Description

79ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Applying 3D behaviors

Apply 3D behaviors in the same way as you apply standard behaviors in Director. You can attach as many behaviors

to a sprite as needed, but each behavior that requires a trigger must have a unique trigger to activate it.

1 Open the Library palette.

2 Open the 3D library.

3 Attach an action behavior to the sprite, either on the Stage or in the Score. The Parameters dialog box appears. Use

it to control the behavior.

4 Specify options in the Parameters dialog box, and click OK.

5 For local behaviors, attach a trigger behavior to the same sprite. For public behaviors, attach a trigger behavior to a

specific sprite.

The Parameters dialog box appears. Use it to control when the trigger should work; what modifier keys, if any, are

associated with the trigger; and to which sprite group the trigger is assigned. For more information about groups,

see “About behavior groups” on page 79.

6 Specify the options in the Parameters dialog box, and click OK.

About behavior groups

The Parameters dialog boxes of the local and public action behaviors give you the option to assign the behavior to a

group of behaviors. Groups let a single trigger initiate actions across multiple sprites. To establish a group, select a

name for the group, and enter that name in the Parameters dialog box of each behavior that you attach to the sprites

in the group.

Name Effect Description

Automatic Model

Rotation

Motion Automatically rotates a model around a given axis and

continues rotating it while the movie plays. To rotate the

model around multiple axes, attach multiple instances of the

behavior to the sprite, and select the desired axis for each one.

Level of Detail Model Enables the level of detail (LOD) modifier for the model.

Dynamically lowers the number of polygons used to render the

model as its distance from the camera increases. Reduces

demands on the CPU.

Model Rollover Cursor Model Changes the mouse pointer to the pointer of your choice when

the mouse rolls over the given model.

Show Axis Debugging Establishes red, green, and blue lines along the x-, y-, and z-

axes, respectively, letting you see them in the 3D scene.

Subdivision Surfaces Model Enables the subdivision surfaces (SDS) modifier for the given

model, which synthesizes additional detail to smooth out

curves as the model's distance from the camera decreases.

Toon Model Enables the toon modifier, which renders the model in a

cartoon style, with a reduced number of colors and distinct

boundaries. The user can set the toon style precisely, by

selecting the number of colors, line color, brightness, and

darkness of highlights and shadows, and anti-aliasing.

80ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Note: A behavior group is not the same as a group node inside a 3D cast member.

Because the triggers are sent to the group name rather than to a specific sprite number, there are no reference changes

to update when a sprite moves from one Score channel to another.

Programming issues

A Shockwave 3D movie makes intensive use of memory and processing time. Before you start developing your own

3D worlds and writing the scripts that will make them interactive, there are a number of programming issues that you

need to be aware of.

• The 3D world can take some time to load into memory. Certain operations are not possible until it has loaded. For

more information, see “Preload requirements” on page 80.

• If you plan to use JavaScript syntax to control your 3D world, you need to understand how to refer to the properties

of 3D objects. See “Lingo and JavaScript access to 3D objects” on page 82 for more details.

• All nodes share the same namespace. You cannot have a group and a model (for example) with the same name. This

is treated in more detail in “3D namespace” on page 85.

Preload requirements

During authoring and in a projector, the media of a 3D cast member can be read from the local hard disk. This usually

happens almost instantaneously.

When you play back a 3D cast member in a Shockwave movie in a browser, the media of the 3D cast member are

initially stored on a remote server. Before the Shockwave movie can display any of the models, textures, and other

objects in the 3D world, a local copy of the media must be transferred to the end-user's computer.

If the local copy were written to the local hard disk, the process would be called downloading. However, for security

reasons, the local copy of a Shockwave movie is stored only in the end-user's Random Access Memory (RAM). This

process is known as preloading.

Preload

There are two ways that you can handle playback of a 3D world from a remote server:

• Preloading: You can preload all the data for the 3D cast member before starting playback. The user will not be able

to start interacting with the 3D world until a local copy of all data from the remote server has been created in the

computer's RAM.

• Streaming: You can set a 3D cast member so that it starts to display objects as soon as the data for those objects

have been preloaded. This means that parts of the 3D world appear very quickly, and the user can start interacting

with these parts before the entire world is available.

To determine which of these options is used, you can set the 3D cast member's preload property.

Internal and external 3D cast members

Internal 3D cast members always have their preload property set to TRUE. You cannot stream internal 3D cast

members. External cast members have their preload property set to FALSE by default.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bb9.html

81ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

To see the difference between preloading and streaming an external W3D file, compare the following two Shockwave

movies:

• preload.html

• stream.html

The same external W3D file can be set to preload or to stream

The same external W3D file can be set to preload or to stream

Both these movies to the same external.w3d file. The only difference between the movies is that in stream.html, the

preload property of the linked Shockwave 3D cast member is set to FALSE. As a result, the 3D media starts to play

back as soon as it can, even before all the textures have finished streaming into your computer's RAM.

You can find the original files for these movies here. You will notice that the CreateExternalW3D.dir movie wastefully

creates too many textures, and only applies the last textures that it creates to the shaders for the cube. This ensures that

even on a fast connection, you can see the cube with empty shaders when streaming starts.

State

A 3D cast member has a state property. This indicates how far the streaming or preloading process has progressed. If

you are using streaming for an external W3D file, you should ensure that the state property has the appropriate value

before using Lingo or JavaScript syntax to control the objects in the 3D world.

http://www.stage.adobe.com/support/director/examples/preload.html
http://www.stage.adobe.com/support/director/examples/stream.html
http://www.stage.adobe.com/support/director/examples/PreloadStream.zip
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bb4.html

82ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Lingo and JavaScript access to 3D objects

Lingo is the original proprietary programming language for Director movies. Lingo access to 3D objects and their

properties is often very flexible.

You can also use JavaScript syntax to write your scripts. However, in order to respect the specifications of JavaScript,

some expressions are longer to write in JavaScript than in Lingo. Certain functions and methods that are available in

Lingo are not available in JavaScript. Other functions are formulated very differently in the two languages.

To realize the full potential of Shockwave 3D, use Lingo wherever you can.

The examples in this article assume that the 3D cast member "3D World" contains a model created from a #box

primitive, which has 6 meshes.

Using getPropRef() and getProp()

Compare these two examples:

-- Lingo
vMember = member("3D World")
put vMember.model(1).resource
-- box("Box")
// JavaScript
vMember = member("3D World");
<(member 1 of castLib 1)>
trace (vMember.getPropRef("model", 1).getProp("resource"));
// <box("Box")>

The following incorrect JavaScript statement attempts to mimic the Lingo syntax. It will throw a script error.

Not all functions in Lingo are implemented as functions in JavaScript syntax

Using symbol()

You cannot use the hash (#) character to define a symbol in JavaScript syntax. You need to use the symbol() function

instead.

-- Lingo
vShader = vMember.newShader("Mesh 1 shader", #standard)
// JavaScript
vShader = vMember.newShader("Mesh 1 shader", symbol("standard"));
<shader("Mesh 1 shader")>

83ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Using setProp()

To change the value of the property of an object with JavaScript syntax, there are some case where you must use the

setProp() command. These two examples continue from the examples above:

-- Lingo
vMember.model(1).shader = vShader
put vMember.model(1).shaderList
-- [shader("Mesh 1 shader"), shader("DefaultShader"), shader("DefaultShader"),
shader("DefaultShader"), shader("DefaultShader"), shader("DefaultShader")]
// JavaScript
vMember.getPropRef("model", 1).setProp("shader", vShader);
trace(vMember.getPropRef("model", 1).getProp("shaderList"))
// <[shader("Mesh 1 shader"), shader("DefaultShader"), shader("DefaultShader"),
shader("DefaultShader"), shader("DefaultShader"), shader("DefaultShader")]>

Cases where getProp and setProp are not required

Not all objects require the use of getProp and setProp in JavaScript. For example:

// JavaScript
sprite(1).camera.getPropRef("overlay", 1).scale = 1.5;
trace(sprite(1).camera.getPropRef("overlay", 1).scale);
// 1.5

Functions and methods missing from JavaScript syntax

Not all 3D features have been fully implemented in JavaScript syntax. For example, it is not possible to obtain a pointer

to an object by using its name. This is possible in Lingo:

-- Lingo
vResource = vMember.modelResource("Box")
put vResource
 -- box("Box")

However, as the examples below show, it is only possible to access the object by its index number through JavaScript.

Access by name will lead to errors.

// JavaScript
vMember = member("3D World");
vResource = vMember.getPropRef("modelResource", 2); // integer
<box("Box")>
trace(vResource);
// <box("Box")>

84ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

Attempting to access an object by its name in JavaScript will lead to script errors

Attempting to access an object by its name in JavaScript will lead to script errors

Using count to count objects

Compare the following examples

-- Lingo
put sprite(1).camera.overlay.count
-- 2
// JavaScript
trace(sprite(1).camera.count("overlay"));
// 2

85ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

3D namespace

A Shockwave 3D cast member can contain objects of the following types:

• Nodes

• Cameras

• Groups

• Lights

• Models

• Model Resources

• Motions

• Textures

• Shaders

Within any of these object types, you may not have two objects with the same name. For example, you cannot have a

light named “Blue” and a model named “Blue” in the same 3D cast member, because both lights and models are nodes.

You can have a light named “Blue” and a shader named “Blue” in the same 3D cast member, because lights and shaders

are different types of objects.

Your third-party 3D design software may allow you to use a more flexible naming system. If you find that some objects

are missing when you export to W3D, it is worth checking if there are duplicate names in the original source files. See

“Export issues” on page 68 for more details.

Note: You may find that the names of objects in an exported W3D file have a different case than they had in the 3D design

software that you used to create them objects. A model named “MyModel” in your 3D design software may be exported

as “mymodel”.

When you use commands such as aNode.cloneDeep(), member3D.cloneModelFromCastMember(), or

member3D.loadFile(), new objects may be added to the 3D cast member. These objects will be renamed during the

process, in order to avoid naming clashes.

The cloneDeep() and loadFile() commands will add “_copyX" (where X is an integer) to the end of the names of

renamed objects. The cloneModelFromCastMember() command will add "_cloneX" (where X is an integer) to the

end of the names of renamed objects. You may find that the new names have all been converted to lower case

characters.

Ensuring that a name is unique

Below are three handlers that you can use to make sure that a given name is unique in the namespace in which it is to

be used. The first is written for textures. You can modify it for shaders, modelResources or motions, by replacing the

string “texture” with the appropriate object name everywhere.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bdb.html

86ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

on GetUniqueTextureName(a3DMember, aName)
 vTexture = a3DMember.texture(aName)
 if not vTexture then
 return aName
 end if
 vIndex = 0
 repeat while TRUE
 vIndex = vIndex - 1
 vUniqueName = aName&vIndex
 vTexture = a3DMember.texture(vUniqueName)
 if not vTexture then
 return vUniqueName
 end if
 end repeat
end GetUniqueTextureName

Example usage:

-- Lingo
vName = GetUniqueTextureName(member("3D"), "George")
put vName
 -- "George-2"
vTexture = member("3D").newTexture(vName)
//JavaScript
vName = GetUniqueTextureName(member("3D"), "George");
George-2
vTexture = member("3D").newTexture(vName)
<texture("George-2")>

The following handlers ensures that no node (camera, group, light or model) has the name that you are planning to use:

87ADOBE DIRECTOR BASICS

3D basics

Last updated 3/24/2014

on GetUniqueNodeName(a3DMember, aName)
 if NodeNameIsUnique(a3DMember, aName) then
 return aName
 end if
 vIndex = 0
 repeat while TRUE
 vIndex = vIndex - 1
 vUniqueName = aName&vIndex
 if NodeNameIsUnique(a3DMember, vUniqueName) then
 return vUniqueName
 end if
 end repeat
end GetUniqueNodeName
on NodeNameIsUnique(a3DMember, aName)
 vNode = a3DMember.camera(aName)
 if not vNode then
 vNode = a3DMember.group(aName)
 if not vNode then
 vNode = a3DMember.light(aName)
 if not vNode then
 vNode = a3DMember.model(aName)
 if not vNode then
 return TRUE
 end if
 end if
 end if
 end if
 return FALSE
end NodeNameIsUnique

88

Last updated 3/24/2014

Chapter 3: 3D: Controlling appearance

A 3D cast member contains the objects that provide access to 3D functionality. This chapter deals with the features

that create a graphic representation of the 3D world.

For information on how to create action and interactions between objects, see “3D: Controlling action” on page 202.

Nodes

All objects in a 3D world are based on a basic object known as a node. The simplest form of a node in a 3D world is a

Group object. A Group object is essentially the most basic node. All other objects in a 3D world are based on a Group

object, which means that the other objects inherit the functionality of a Group object in addition to containing

functionality that is specific to those objects.

• Groups are the most basic kind of nodes. All other nodes share all the methods and properties of a group. See

“Groups” on page 88 for more information.

• You can link nodes together in parent-child relationships. The two nodes will then move together as if an invisible

bar linked them. For example, if you have a model called "Head", and a model called "Hat". You can make the hat

model the child of a head model. When the head moves, the hat will move with it. See “Node hierarchy” on page 91

for more details

• Every 3D cast member contains a group named "World". A model that is not a child of group("World") will not be

visible to a camera that is a child of group("World"). See “Group("World")” on page 93 for more details.

• Each node in the world has a spatial relationship to all others. This relationship is defined by a combination of the

node's transform and its position in a parent-child hierarchy. See “Frame of reference” on page 97 for more details

on how to move nodes relative to each other.

• All nodes have a property list attached to them, called userData. See “userData” on page 99 for some ideas on how

to benefit from this feature.

• You can make copies of any node, and optionally of all its children and the graphic objects that it uses. See

“Cloning” on page 101 for more details.

• Certain actions, such as playing a motion or the collision between two objects, occur at specific times and generate

events which can be handled by scripts registered for the purpose. See “Events” on page 355 for more details.

Groups

A group is the most basic node. It is merely a point in space that is represented by a transform. You can assign children

and parents to this node in order to group models, lights, cameras, or other groups. Any translation, rotation, or scale

applied to the parent group affects all its children. Removing the group from the world removes all its children.

Accessing the groups in a 3D member
-- Lingo
put member("3D").group.count
-- 1
// JavaScript
trace(member("3D").count("group"));
// 1

89ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

To access a particular group, you can use its name (Lingo only) or its index number.

-- Lingo
put member("3D").group[1]
-- group("World")
put member("3D").group(1)
-- group("World")
put member("3D").group("hug")
-- group("Hug")
// JavaScript
trace(member("3D").getPropRef("group", 1));
// <group("World")>

If a group with the given name or index number does not exist, Director will return VOID (Lingo) or undefined

(JavaScript); no error occurs.

Creating a group

Use the member3D.newGroup() function to create a new group with a given unique name.

-- Lingo syntax
vGroup = member("3D").newGroup("Musicians")
put vGroup
-- group("Musicians")
// JavaScript
vGroup = member("3D").newGroup("Musicians");
<group("Musicians")>

Ensure that the name is unique, which means that the name is not already used by any other node (model, light, group

or camera). If you try to create a new group with the same name as an existing node, a script error occurs: “Object with

duplicate name already exists”.

See “3D namespace” on page 85 for more details and a script that ensures that you have a unique name for the group

that you are about to create.

Deleting a group

To delete a group, use the member3D.deleteGroup() function. You can identify the group either by its name or its

index number. Deleting a group may change the index number of other groups. If you attempt to delete a non-existent

group, no error occurs.

-- Lingo syntax
put member("3D").deleteGroup("Disbanded")
-- 1
put member("3D").deleteGroup("Disbanded")
-- 0
put member("3D").deleteGroup(2)
-- 1
// JavaScript syntax
trace(member("3D").deleteGroup("Disbanded"));
// 1
member("3D").deleteGroup("Disbanded");
0
member("3D").deleteGroup(2);
1

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bd3.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be3.html

90ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Using a group

Like every other node, a group has a transform property, which allows it to be positioned in 3D space, rotated, and

scaled. It can also be placed in a parent-child relationship with other nodes (see “Node hierarchy” on page 91 for more

details).

 These two features allow you to use groups in a variety of ways.

• As parent of a group of nodes

• Scaling

• To provide an anchor point for a model

• To provide an extra degree of freedom. See “Looking around” on page 222 for an example where the parent group

for a camera determines the position of the camera and the axis of the camera's movements. This allows the camera

to tilt without affecting its movement in space.

Examples

The following Lingo code creates a “Box model” and a “Plane model” from primitives with default values. It makes

each the child of its own group and modifies the transform of the group. The result is a box which appears to stand at

the surface of the plane.

v3DMember = member("3D")
vName = "Plane"
vResource = v3DMember.newModelResource(vName, #plane)
vModel = v3DMember.newModel(vName&" model", vResource) vModel.rotate(-90, 0, 0)
pPlane = v3DMember.newGroup(vName)
pPlane.addChild(vModel, #preserveWorld)
pPlane.scale(200)
vName = "Box"
vResource = v3DMember.newModelResource(vName, #box)
vModel = v3DMember.newModel(vName&" model", vResource)
vModel.translate(0, vResource.height / 2, 0)
pBox = v3DMember.newGroup(vName)
pBox.addChild(vModel, #preserveWorld)
pBox.rotate(0, 30, 0)

To find the original code, download the movie GroupDemo.dir.

Using a group to provide a model with a more appropriate scale or origin point.

The following Lingo code creates four models named “Wheel_1” to “Wheel_4” at the corners of a rectangle. It makes

each wheel the child of a group called “Chassis”, and then scales and rotates the group.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9a.html
http://www.adobe.com/support/director/examples/GroupDemo.dir

91ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

v3DMember= member("3D")
pChassis = v3DMember.newGroup("Chassis")
vName = "Wheel_"
vResource = v3DMember.newModelResource(vName, #cylinder)
vResource.height = 10
vRadius = vResource.topRadius
repeat with ii = 1 to 4
vModel = v3DMember.newModel(vName&ii, vResource)
vModel.rotate(0, 0, 90)
vX = (ii mod 2) * 50 - 25
vZ = (ii > 2) * 70 - 35
vModel.translate(vX, vRadius, vZ, #world)
pChassis.addChild(vModel, #preserveWorld)
end repeat
pChassis.scale(0.20)
pChassis.rotate(0, 30, 0)

Node hierarchy

Each node in a 3D world may have one parent and any number of children. By default, each new model is set as a child

of the group(“World”). See “Group("World")” on page 93 for more details.

Each child node inherits the transform of its parent node as a frame of reference. The final position, rotation, and scale

of a model in the world depends on the transform of each node in its hierarchy of parents. See “Frame of reference”

on page 97 for more details.

The primary benefit of these parent-child relationships is that they make it easier to move complex models around in

the 3D world and to have the component parts of those models move together in the proper way. In the example of a

car, if the wheels of the car are defined as children of the car model, then moving the car will cause the wheels to be

moved with the car in the expected manner. If no parent-child relationship is defined between the car and the wheels,

moving only the car causes the wheels to be left behind in their original position in the world.

Scripting terms to use with parent-child relationships

You can use these scripting terms when you are working with parent-child relationships:

• node.addChild()

• node.child.count (Lingo) or aNode.count("child") (JavaScript)

• node.child() (Lingo) or node.getPropRef("child", aIndex) (JavaScript)

• node.parent

To test these terms, download and launch the movie WheelDemo.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfc.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c26.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c25.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c158f2-7fed.html
http://www.adobe.com/support/director/examples/WheelDemo.dir

92ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Clicking the 3D sprite changes the parent of model("Wheel_4")

What to preserve with addChild()

When you set a node to be the child of another node, you can determine whether the child node remains in the same

place in the world after its adoption, or whether it remains in the same relative position to its parent. In the latter case,

the position, rotation, and scale of the child node may change with respect to the world. On beginSprite(), the

Wheel Demo behavior uses a code similar to the following:

-- Lingo syntax
vGroup = member("3D").group("Chassis")
vModel = member("3D").model("Wheel_4")
vGroup.addChild(vModel, #preserveWorld)
-- JavaScript syntax
vGroup = member("3D").getPropRef("group", 3);
vModel = member("3D").getPropRef("model", 5);
vGroup.addChild(vModel, symbol("preserveWorld"));

This code alters the transform of the child model so that it remains in the same position relative to the world. Click

twice on the 3D sprite. The second time you click, a code similar to the following is executed:

-- Lingo syntax
vGroup.addChild(vModel, #preserveParent)
// JavaScript syntax
vGroup.addChild(vModel, symbol("preserveParent"));

This code changes the parent of the Wheel_4 model, but does not alter its transform. The model's position, rotation,

and scale relative to the world change.

Testing in the Message window

To test the other scripting terms, try typing these commands in the Message window:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9a.html

93ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo syntax
vGroup = member("3D").group("Chassis")
put vGroup.child.count
-- 4
put vGroup.child(1)
-- model("Wheel_1")
put vGroup.child("Wheel_2")
-- model("Wheel_2")
put member("3D").model("Wheel_3").parent
-- group("Chassis")
// JavaScript syntax
vGroup = member("3D").getPropRef("group", 3);
<group("Chassis")>
trace(vGroup.count("child"));
// 4
trace(vGroup.getPropRef("child", 1));
// <model("Wheel_1")>
trace(member("3D").getPropRef("model", 5).parent);
// <group("Chassis")>
trace(member("3D").getPropRef("model", 5).getProp("parent"));
// <group("Chassis")>

Moving a node without reference to its parent

Set aNode.worldPosition to a position vector. This will alter the position property of the child node's transform. The

value for the new position will depend on the transforms of all the child node's parents. You can alter the world

rotation or scale of a child node in this way. See “Frame of reference” on page 97 for more details.

Group("World")

Each 3D cast member contains a group object called "World", which may contain a tree-like parent-child hierarchy of

nodes, such as models, groups, lights, and cameras. Nodes that have group("World") as an ancestor are rendered by

the default camera.

A cast member may also contain nodes that do not have ‘world’ as an ancestor, such as nodes with a parent property

set to VOID. To improve performance, you can remove any models from the world that are not currently visible. For

example, while the user is observing a scene inside a room, all models outside the room can be temporarily removed

from the world.

Nodes that are not children of the group("World") are not normally rendered. However, you can set the rootNode of

a camera to a node that is not in the world. This technique is useful for creating a sky box, for example. See “Sky box”

on page 108 for more details.

Scripting terms to use with reference to group("World")

• node.isInWorld() is TRUE if group("World") is a parent or ancestor of the node, FALSE if not.

• node.addToWorld() sets the parent of the node to group("World") if node.isInWorld() is FALSE. Does not do

anything if group("World") is already a parent or ancestor of the node.

• “Sky box” on page 108node.removeFromWorld() sets the parent of the node to VOID.

• node.getWorldTransform() returns the transform that need to be applied to the node to display at in its current

position. This property returns rotation and scale if the parent is group("World").

• node.worldPosition gets and sets the position of the node in world space. The value of node.transform.position may

be different from its worldPosition if the node's parent is not group("World").

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bed.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfe.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfb.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bed.html

94ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• node.boundingSphere gives the center and radius of the smallest sphere that completely encloses the node and all

its children. The values are in world co-ordinates.

• node.pointAt() turns the node so that its pointAtOrientation is facing towards the given node or position, given

in world coordinates.

• node.pointAtOrientation gets and sets the directions that the node uses for its forward and upwards directions.

To test these terms, download and launch the movie WheelDemo.dir.

removeFromWorld() and addWorld()

When you click on the 3D sprite, the Wheel Demo behavior uses a code similar to the following:

-- Lingo syntax
vModel = member("3D").model("Wheel_4")
put vModel.parent
-- group("Chassis")
vModel.removeFromWorld()
put vModel.parent
-- <Void>
vModel.addToWorld()
put vModel.parent
-- group("World")
// JavaScript syntax
vModel = member("3D").getPropRef("model", 5);
trace(vModel.parent);
/ / < g roup("Chassis")>
 v M o d el.remove F r o m World();
trace(vM odel.parent);
// undef ined
vModel.addToWorld();
trace(vModel.parent);
// <group("World")>

When a node is removed from the world, its transform property remains unchanged. If you later reset its parent to its

original parent, it returns to exactly the same position in the world.

If you use node.addToWorld(), you set the parent of the node to group("World"). If this was not the original parent,

the node may appear in a new position. See “Node hierarchy” on page 91 for details on how to set the parent of a node

to a node other than group("World"). See “Returning a node to its original place” on page 96 for an alternative solution.

Testing in the Message window

Try executing the following commands in the Message window.

Note: The layout of the transform data is modified to make it more readable.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74c8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bef.html
http://www.adobe.com/support/director/examples/WheelDemo.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfb.html

95ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo syntax
vModel = member("3D").model("Wheel_4")
put vModel.parent
-- group("Chassis")
put vModel.isInWorld()
-- 1
vModel.addToWorld()
put vModel.parent
-- group("Chassis")
put vModel.getWorldTransform()
-- transform(-0.00000, 0.20000, 0.00000, 0.00000,

-0.17321, -0.00000, 0.10000, 0.00000,
0.10000, 0.00000, 0.17321, 0.00000,
-0.83013, 5.00000, 8.56218, 1.00000)

put vModel.worldPosition
-- vector(-0.8301, 5.0000, 8.5622)
vModel.removeFromWorld()
put vModel.isInWorld()
-- 0
put vModel.worldPosition
-- vector(-0.8301, 5.0000, 8.5622)
vModel.addToWorld()
put vModel.parent
-- group("World")
put vModel.worldPosition
-- vector(-25.0000, 25.0000, 35.0000)
// JavaScript syntax
vModel = member("3D").getPropRef("model", 5);
trace(vModel.parent);
// <group("Chassis")>
trace(vModel.isInWorld());
// 1
vModel.addToWorld();
1
trace(vModel.getWorldTransform());
// <transform(-0.00000, 0.20000, 0.00000, 0.00000,

-0.17321, -0.00000, 0.10000, 0.00000,
0.10000, 0.00000, 0.17321, 0.00000,
-0.83013, 5.00000, 8.56218, 1.00000)>

trace(vModel.worldPosition);
// <vector(-0.8301, 5.0000, 8.5622)>
vModel.removeFromWorld();
1
trace(vModel.isInWorld());
// 0
trace(vModel.worldPosition);
// <vector(-0.8301, 5.0000, 8.5622)>
vModel.addToWorld();
1
trace(vModel.parent);
// <group("World")>
trace(vModel.worldPosition);
// <vector(-25.0000, 25.0000, 35.0000)>

Points to note:

• If you use addToWorld() on a node that is already in the world, nothing happens.

96ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• If you use addToWorld() on a node that is not in the world, its parent is set to group("World").

• Both getWorldTransform() and worldPosition retain their values after a node has been removed from the

world.

• When addToWorld() is used, the node's transform does not change, but the worldPosition and the result return

by getWorldTransform() are updated if the node's original parent was rotated or scaled, or was not at the center

of the world.

Returning a node to its original place

Even after a node has been removed from the world, its getWorldTransform() returns the value that was last valid

when it was still in the world. When you use node.addToWorld(), the value returned by getWorldTransform() is

reset. If you store a copy of the model's world transform, you can return the node to its original location after using

addToWorld().

Here is an example to try in the Message window after relaunching the WheelDemo.dir movie.

-- Lingo syntax
vModel = member("3D").model("Wheel_4")
vModel.removeFromWorld()
vTransform = vModel.getWorldTransform()
vModel.addToWorld()
vModel.transform = vTransform
// JavaScript syntax
vModel = member("3D").getPropRef("model", 5);
vModel.removeFromWorld();
vTransform = vModel.getWorldTransform();
vModel.addToWorld();
vModel.transform = vTransform;

Note that, to achieve the same effect without actually removing the node from the world, you can use:

-- Lingo syntax
v3DMember = member("3D")
vModel = v3DMember.model("Wheel_4")
v3DMember.group(1).addChild(vModel, #preserveWorld)
// JavaScript syntax
v3DMember = member("3D");
vModel = v3DMember.getPropRef("model", 5);
v3DMember.getPropRef("group", 1).addChild(vModel, symbol("preserveWorld"));

boundingSphere

The boundingSphere of a node is a list that gives the center and radius of the smallest sphere that completely encloses

the node and all its children. The values are in world coordinates.

-- Lingo syntax
put member("3D").model("Wheel_4").boundingSphere
// JavaScript syntax
trace(member("3D").getPropRef("model", 5).boundingSphere);

The output depends on whether Wheel_4 is a child of group("Chassis")

 -- [vector(-0.8301, 5.0000, 8.5622), 5.0990]

… or of group("World"):

 -- [vector(-25.0000, 25.0000, 35.0000), 25.4951]

http://www.adobe.com/support/director/examples/WheelDemo.dir

97ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

For models with no children, you can visualize the boundingSphere by setting the debug property of the model to

TRUE. member("3D").model("Wheel_4").debug = TRUE

If you need to visualize the boundingSphere of a node that is not a model, or which has children, you can create an

invisible plane with the appropriate dimensions and place it at the center of the node's boundingSphere.

on ShowBoundingSphere(a3DMember, aNode)
vBoundingSphere = aNode.boundingSphere
vPosition = vBoundingSphere[1]
vRadius = vBoundingSphere[2]
vSquareSide = (vRadius * vRadius) / 2.0
vSide = sqrt(vSquareSide) * 2
vName = aNode.name&"_debugModel"
vPlane = a3DMember.model(vName)
if not vPlane then
vPlane = a3DMember.newModel(vName)
end if
vPlane.resource = a3DMember.modelResource(1) -- "DefaultPlane"
vPlane.visibility = #none
vPlane.transform.scale = vector(vSide, vSide, vSide)
vPlane.worldPosition = vPosition
vPlane.debug = TRUE

end ShowBoundingSphere

Example usage:

ShowBoundingSphere(member(2), member(2).group("Chassis"))

Pointing at positions in the world

The target of the node.pointAt() command refers to a position in world coordinates, or to the worldPosition of a

node. Try the commands below in the Message window.

-- Lingo syntax
member("3D").model("Wheel_4").pointAt(0, 5, 0)
member("3D").model("Wheel_4").pointAt(member("3D").model(3))
// JavaScript syntax
member("3D").getPropRef("model", 5).pointAt(0, 5, 0);
member("3D").getPropRef("model", 5).pointAt(member("3D").getPropRef("model", 3))

For more details of the pointAt() command and the use of pointAtOrientation, see “Using pointAt() to rotate a

node” on page 212.

Frame of reference

Every node has a transform property. This defines the position, rotation, and scale of the node, with reference to the

node's parent. If the node's parent is group("World"), then the node's transform and the value returned by

node.getWorldTransform() contains identical values. If you alter the values of the node's transform, then the changes

will affect the node. The value returned by getWorldTransform() is no longer connected to the node, so changes made

to that transform does not affect the node.

Scripting terms that affect the node's transform:

• node.transform

• node.rotate()

• node.translate()

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf2.html

98ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• node.scale()

• node.worldPosition

• other Node.addChild(node, #preserveWorld)

Determining the frame of reference transform

The transform of a node indicates a modification from a reference transform. A node's transform says: "Starting with

the transform of the node's parent, apply this translation, this rotation and this scale".

A node may be at the end of a chain of parent-child relationships. Each node in the chain applies its transform to the

transform of its parent. Imagine that the default position of your arm is dangling down by your side. In order to put

your finger in your ear, you may need to rotate your upper arm around your shoulder, rotate your forearm about your

elbow, and rotate your hand around your wrist. The final "transform" of your finger depends on the transforms of all

its "parents". Altering any one of the parents' transforms moves your finger.

To determine the reference transform of a node, you can use the following expression:

vReferenceTransform = aNode.parent.getWorldTransform()

Converting from one frame of reference to another

Imagine that you have two nodes with different parents. Imagine that you want to place one node at exactly the same

position as the other, without changing the parents. How do you work out what transform to apply?

To see a demonstration of this idea, download and launch the movie ParentChain.dir. This creates two parent-child

hierarchies, one in red the other in blue. The smallest blue cone near the center of the sprite is at the root of the

hierarchy of blue models. You can drag this model around, to see its child and grand-child follow it. The largest blue

and red models are the grand-children of each chain. The GetRelativeTransform() handler converts the transform

of the big red cone into the frame of reference of the big blue cone.

Click Convert Frame Of Reference to set the transform of the big blue cone

You can perform 3D mathematics on transforms. See “3D mathematics” on page 361 for more details. The

GetRelativeTransform() handler works out the inverse of the world transform of the big blue cone's parent. This is

the transform that moves the parent back to the origin of the world. It then applies the world transform of the big red

cone to that inverse transform. In other words, it creates a transform that first sends the big blue cone back to the center

of the world and then it moves it out again to the same location as the big red cone.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-789e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bed.html
http://www.adobe.com/support/director/examples/ParentChain.dir

99ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

on GetRelativeTransform(aNode, aTargetNode)
vTargetTransform = aTargetNode.getWorldTransform()
vFrameOfReference = aNode.parent.getWorldTransform()
vInverse = vFrameOfReference.inverse()
vRelativeTransform = vInverse * vTargetTransform
return vRelativeTransform

end GetRelativeTransform

An alternative approach is to change the parent of the big blue cone twice. Try the following commands in the Message

window:

-- Lingo syntax
v3DMember = member("3D")
vTarget = v3DMember.model("Red3")
vModel = v3DMember.model("Blue3")
vParent = vModel.parent
vModel.parent = v3DMember.group("World")
vModel.transform = vTarget.getWorldTransform()
vParent.addChild(vModel, #preserveWorld)
// JavaScript syntax
v3DMember = member("3D");
vTarget = v3DMember.getPropRef("model", 3);
vModel = v3DMember.getPropRef("model", 6);
vParent = vModel.parent;
vModel.parent = v3DMember.getPropRef("group", 1);
vModel.transform = vTarget.getWorldTransform();
vParent.addChild(vModel, symbol("preserveWorld"));

userData

All nodes have a property list named userData attached to them.

-- Lingo syntax
put member("3D").model(1).userData
-- [:]
// JavaScript syntax
trace(member("3D").getPropRef("model", 1).userData);
// <[:]>

Permanence of the contents of the userData list

Depending on the third-party 3D design software used, your 3D designer may be able to add data to the userData lists

of the various nodes when exporting the 3D world to W3D format. In this case, that data will be available to you

permanently both during authoring and at runtime.

In Director 11.5, any data that you add to a node's userData list while authoring will not be saved with the 3D world,

even if you use the member3D.saveWorld() command first. In other words, changes made to a node's userData list

are available only for the current session.

In Director 11.5, you cannot set the userData list to a Lingo property list. This provokes an "Access not supported"

script error. To change the contents of the userData list, you must act directly on the built-in list.

Also, in Director 11.5, you cannot use bracket access to get or set values in the userData list. If you try to set a value

for bracket access, a script error occurs (Access not supported). When you use bracket access to retrieve a value, a

pointer to the entire list is returned. However, you can create a pointer to the list and use all the standard list methods

on that.

When working directly on a Node.userData lists, some standard list methods are not supported.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68df.html

100ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

When working directly on aNode.userData lists, some standard list methods are not supported.

Accessing the content of the userData list

To avoid confusion with the limited range of methods that the userData list supports, you may find it easier to create

a pointer to a userData list. You will be able to use all the standard list commands on this de-referenced list. For

example:

-- Lingo syntax
vUserData = member("3D").model(1).userData
vUserData[#custom] = "value"
put member("3D").model(1).userData
-- [#Custom: "value"]
// JavaScript syntax
vUserData = member("3D").getPropRef("model", 1).userData;
<[:]>
vUserData[symbol("custom")] = "value";
0
trace(member("3D").getPropRef("model", 1).userData);
// <[#Custom: "value"]>

Uses of the userData list

You can use a node's userData list to store any information that you want. You can, for example, store a list of objects

that an avatar is carrying in the avatar model's userData list. One very practical use is as a means to add script instances

directly to a node, in much the same way that you can add behaviors to a sprite. You can then send events to the node's

userData list, using a command similar to the following:

-- Lingo syntax
call(#CustomEvent, aNode.userData{, parameter, …})

Note: In Director 11.5, the call() method does not work in JavaScript syntax

To see a full description of this technique, see “Pick Action behavior” on page 244. To see an example, download and

launch the movie ParentChain.dir. In the Message window, type the following commands:

-- Lingo syntax
vScript = script("Rollover Cursor")
vScript.new(sprite 1, member("3D").model("Blue1"))

This adds an instance of the rollover cursor script to the userData list of the smallest blue cone. When you move the

mouse pointer over that model, the cursor changes to an open hand to indicate that you can drag the model.

http://www.adobe.com/support/director/examples/ParentChain.dir

101ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

A script instance added to the userData list of a model can handle events like a behavior on a sprite

Cloning

You can create duplicate copies of any node in a 3D member, using the node.clone() function. To duplicate all the

node's children and all modelResources, shaders, and textures used on any of the models in the hierarchy, use

node.cloneDeep().

When you use node.cloneDeep(), new objects are added to the 3D cast member. These objects are automatically

renamed during the process, in order to avoid naming clashes. See “3D namespace” on page 85 for more details.

Cameras

Cameras act as windows into a 3D world and define a view into the 3D world. Each camera that exists in a 3D cast

member offers a different view into it, and each sprite that uses a 3D cast member uses one of these cameras.

A camera’s position can be moved with the Property inspector or the Shockwave® 3D window. You can also use the

Adobe® Director® 3D behaviors, Lingo, or JavaScript syntax to add a camera and manipulate its positions.

In a movie camera in the real world, you can change the view by altering:

• The position of the camera

• The direction in which you point the camera

• The tilt of the camera (to create a sloping horizon)

• The focal length of the camera lens (zoom). See “Perspective” on page 102 for more details.

For a detailed treatment of these features, see “Moving the camera” on page 216.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfa.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf9.html

102ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Virtual controls

A Shockwave 3D camera gives you additional controls for the view:

• You can choose an orthographic projection to remove all trace of perspective. For an overview of camera projection

features, see “Perspective” on page 102. For details of the specific properties, see projection, projectionAngle, its

synonym fieldOfView, and orthoHeight.

• You can determine which objects are visible. See “RootNode” on page 107 and rootNode.

• You can choose which slice of the 3D world is visible. See “Hither and yon” on page 110, hither and yon.

Additional features

You can also control the appearance of the view:

• If you use multiple cameras in your 3D sprite, you can define the insert rect of the additional cameras. See “Multiple

cameras” on page 103 and “MiniMap” on page 233

• You can set the background color for each camera. See “Color buffer” on page 105.

• You can make distant objects appear in muted colors, using fog. See “Fog” on page 111.

• You can add overlays and backdrops. See “Overlays and backdrops” on page 112.

Properties shared with other nodes

Like groups, lights and models, all cameras share a set of properties and methods with all other nodes. These include:

• A unique node name

• A transform to define its position, orientation, and scale.

• The ability to pointAt() another node or a point in space.

• A position in the world's parent-child hierarchy, with a single parent and possibly multiple children. See “Node

hierarchy” on page 91.

• A userData property list which can store any kind of information

For more details on 3D nodes, see “Nodes” on page 88.

Perspective

On many movie and photo cameras, you can adjust the zoom. In the real world, you change the focal length of the

camera's lens system and the angle of view changes. With a virtual 3D camera, you simply set the angle of view directly.

Shockwave 3D uses two synonymous terms: projectionAngle and fieldOfView. You are free to use either term. To

simplify this article, projectionAngle is used exclusively throughout.

A Shockwave 3D camera can also be set to display an orthographic view. This is the view that is used for drafting

architectural and technical designs. In a perspective view, distant objects appear smaller, and parallel lines in the world

appear to converge. In an orthographic view, all objects appear at their actual size and parallel lines remain parallel.

When the camera is in orthographic mode, if you move the camera forwards or backwards, the shape and size of the

models do not change. In the perspective mode, moving the camera forwards and backwards gives you a natural

impression of movement. The camera's projectionAngle determines the “zoom” of the image.

In the orthographic mode, the camera's orthoHeight determines how many world units are visible vertically in the

sprite. In an orthographic view, changing the distance of the camera from the target does not change the shape and

size of the models.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bff.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bff.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c22.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c0f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfe.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c10.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfd.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7fb3.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bee.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bff.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c22.html

103ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Default values

By default, the camera of a new #shockwave3d member is set to show a #perspective projection, with a projectionAngle

of 34.5160°. This makes for a natural-looking view.

v3DMember = new(#shockwave3d)
vCamera = v3DMember.camera(1)
put vCamera.projection
-- #perspective
put vCamera.projectionAngle
-- 34.5160

The camera's orthoHeight is already set to a default value, even if it is not yet in use:

put vCamera.orthoHeight
-- 200.0000

A camera created by the member3D.newCamera() function has a different projectionAngle of 30° by default:

vNewCamera = v3DMember.newCamera("Test")
put vNewCamera.projection
-- #perspective
put vNewCamera.projectionAngle
-- 30.0000
put vNewCamera.orthoHeight
-- 200.0000

Examples

The following example changes the projection mode of the camera of sprite(“3D”) to #perspective and sets the

camera's projectionAngle to 30°:

-- Lingo
vCamera = sprite("3D").camera
vCamera.projection = #perspective
vCamera.projectionAngle = 30.0 -- degrees
// JavaScript
vCamera = sprite("3D").camera;
vCamera.projection = symbol("perspective");
vCamera.projectionAngle = 30.0; // degrees

The following example changes the projection mode of the camera of sprite(“3D”) to #orthographic and sets the

camera's orthoHeight to 200:

-- Lingo
vCamera = sprite("3D").camera
vCamera.projection = #orthographic
vCamera.orthoHeight = 200.0 -- world units
// JavaScript
vCamera = sprite("3D").camera;
vCamera.projection = symbol("orthographic");
vCamera.orthoHeight = 200.0; // world units

Multiple cameras

By default, a 3D sprite displays the view from only one camera. Every 3D member has a camera named “Default View”.

The view from this camera fills the entire area of the sprite. In a 3D design application, you can create more than one

camera and export it as an object in the W3D file. You can change the camera that is used to create the main view for

the 3D sprite to any of these cameras.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bd4.html

104ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Imagine that a sprite named “3D” contains a 3D cast member with 3 or more cameras. This example will set the camera

of sprite(“3D”) to the third camera of the cast member:

-- Lingo
v3DSprite = sprite("3D")
v3DMember = v3DSprite.member
v3DSprite.camera = v3DMember.camera(3)
// JavaScript
v3DSprite = sprite("3D");
v3DMember = v3DSprite.member;
v3DSprite.camera = v3DMember.getPropRef("camera", 3);

You can use several sprites to display the same 3D cast member, and use a different camera for each sprite. This will give

you several views into the same 3D world. To see an example, download the movie MultipleViews.dir and launch it.

Viewing a 3D cast member with different cameras in different sprite

Creating a new camera on the fly

You can use the member3d.newCamera() function to create a new camera. This example creates a new camera in the

3D cast member that is displayed in sprite(“3D”), and calls it “Top Down”. It then places the camera above the center

of the world and points it downwards:

http://www.adobe.com/support/director/examples/MultipleViews.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bd4.html

105ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo
v3DSprite = sprite("3D")
v3DMember = v3DSprite.member
vCamera = v3DMember.newCamera("Top Down")
vCamera.projectionAngle = 45.0
vCamera.worldPosition = vector(0, 250, 1)
vCamera.pointAt(0, 0, 0)
// JavaScript
v3DSprite = sprite("3D");
v3DMember = v3DSprite.member;
vCamera = v3DMember.newCamera("Top Down");
vCamera.projectionAngle = 45.0;
vCamera.worldPosition = vector(0, 250, 10);
vCamera.pointAt(0, 0, 0);

Rendering a secondary camera in the 3D sprite

The view from the new camera is automatically rendered to the 3D sprite. You need to provide two additional

instructions. Here are the scripting terms you need to use: sprite3d.addCamera() and camera.rect.

The following example creates an inset at the top left corner of sprite(“3D”) to show the output of the new camera

(“Top Down”):

-- Lingo
v3DSprite = sprite("3D")
vCamera = v3DSprite.member.camera("Top Down")
v3DSprite.addCamera(vCamera)
vCamera.rect = rect(0, 0, 160, 120)
// JavaScript
v3DSprite = sprite("3D");
vCamera = v3DSprite.member.getPropRef("camera", 2);
v3DSprite.addCamera(vCamera);
vCamera.rect = rect(0, 0, 160, 120);

All sprites that display the same 3D cast member display the same secondary camera views. It is not advisable to use

the same camera as the main view for one sprite and as a secondary camera for another sprite. The dimensions of the

sprite where the camera is used for the main view affects the camera.rect for the secondary view in the other sprite. The

two views will have the same dimensions. You can set the rect of the primary camera of a 3D sprite, but you may get

unexpected results if you make the dimensions of the camera.rect smaller than the dimensions of the sprite.

Deleting a secondary camera view

To remove a camera that you have added to a 3D sprite, you can use sprite3d.deleteCamera(). This will remove the

secondary camera view from all sprites that display the same 3D cast member. It will not delete the camera from the

3D cast member itself.

Color buffer

Every camera has a colorBuffer property. You cannot access this directly, but you can get and set the values of its two

properties:

• camera.colorBuffer.clearValue

• camera.colorBuffer.clearAtRender

The clearValue property defines a fill color and clearAtRender determines whether that color is used to fill in any blank

spaces behind visible models.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7ba9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-797f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be4.html

106ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

clearValue

The following example shows that the colorBuffer.clearValue is closely related to the 3D cast member's background

color. Changing the member's bgColor will change the colorBuffer.clearValue for all cameras of that member.

put member("3D").bgColor
-- color(0, 0, 0)
put member("3D").camera(1).colorBuffer.clearValue
-- color(0, 0, 0)
vSecond = member("3D").newCamera("Second")
member("3D").bgColor = color(111, 22, 3)
put member(1).camera(1).colorBuffer.clearValue
-- color(111, 22, 3)
put vSecond.colorBuffer.clearValue
-- color(111, 22, 3)

You may want different cameras in the same 3D cast member to have different background colors. If so, you must first

adopt the camera for the 3D sprite, and then change the camera's colorBuffer.clearValue. If you set the

colorBuffer.clearValue first, then its value will be overwritten by the member's bgColor when you adopt the camera

for the sprite.

To see an example, download the movie MultipleViews.dir and launch it. Each of the sprites shows a view from a

different camera with a different colorBuffer.clearValue.

Set a camera's colorBuffer.clearValue after adopting the camera for a sprite

clearAtRender

When a camera refreshes its view of the world, the render process follows this order:

• Fill view with background color

• Show backdrops

• Render visible models

• Show overlays

http://www.adobe.com/support/director/examples/MultipleViews.dir

107ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

You can tell a camera not to fill its rectangular area with the color defined by its colorBuffer.clearValue. To do this, you

set its colorBuffer.clearAtRender property to FALSE. This means that the camera will start with whatever image it

already holds in its display buffer and render the current view of the scene on top of that. If you are using only one

camera, this approach leads to trails. You can make these trails fade over time by using a semi-transparent backdrop.

To see an example, download the movie Interpolate.dir and launch it. Try different values for the blend of the

backdrop.

Using colorBuffer.clearAtRender = FALSE to create trails, and a backdrop to make the trails fade out

See “Overlays and backdrops” on page 112 for more information on backdrops. See “Sky box” on page 108 for an

example of using colorBuffer.clearValue = FALSE with multiple cameras.

RootNode

A camera's rootNode property determines which models are rendered by the camera, and which lights are used in the

rendering process. By default, a camera's rootNode property is set to the 3D cast member's group(“World”). This

means that:

• The camera can “see” all the models that are children of group(“World”)

• All the lights, which are children of group(“World”), affect all these models.

You can set the rootNode of the camera to any node you like. The node does not even need to be a child of

group(“World”). To see the effect that this has, download the movie RootNode.dir and launch it. On the left, you will

see a 3D sprite. On the right, you will see the hierarchy of nodes in the 3D world.

A camera will render its rootNode and all its children using lights that are on the same branch in the hierarchy

http://www.adobe.com/support/director/examples/Interpolate.dir
http://www.adobe.com/support/director/examples/RootNode.dir

108ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

You can drag the lines from the parent and rootNode boxes to any of the dots that indicates a node in the 3D cast

member. This will change the relationship between the camera and the literality”) in the 3D world. Experiment with

different settings.

In the following illustration, the parent of the light(“RedLight”) has been set to the parent of the model(“Head2”).

These two nodes share the same parent. However, the white light(“UIDirectional”) is nearer the head of the hierarchy.

The model(“Head1”) is not in the same branch as the camera's rootNode.

Only the model(“Head2”) and its children are rendered, and they are lit only by light(“Red Light”)

For more information on parent-child hierarchies, see “Node hierarchy” on page 91.

Sky box

Imagine that you are traveling in a fast car along a straight road. Objects that are close to you, such as telephone poles

along the sides of the road, appear to move past very fast in the opposite direction. The sky, on the other hand, is a huge

distance away. Even if you travel fast, the moon and the clouds appear to travel with you. If you create a 3D world with

an outdoor scene, you will want to be able to simulate this effect of a motionless sky. The solution is to create a sky box.

The principle is to create a specific camera to render the image of the sky, and then to render the rest of the world on

top of the sky image, using a different camera. You can do this with the techniques that you saw earlier in this section:

• sprite3d.addCamera() in “Multiple cameras” on page 103

• camera.rect in Multiple cameras

• camera.colorBuffer.clearAtRender in “Color buffer” on page 105

• camera.rootNode in “RootNode” on page 107

You also need to:

• Synchronize the node.rotation of the camera that shows the sky with the rotation of the camera that shows the rest

of the world. For more information, see “Rotating around an object” on page 218 and “3D mathematics” on

page 361

• Change the natural parent-child hierarchy of objects. For more information on this, see “Node hierarchy” on

page 91.

To see a demonstration of a sky box, download the movie Skybox.dir and launch it. You can use the arrow keys to

rotate the main camera or you can click on the 3D sprite, and then drag the mouse pointer in the direction in which

you want the camera to turn. To move forward or back, you can use the I and O (in and out) keys, or the W and S keys.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7ba9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-797f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c24.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfe.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf4.html
http://www.adobe.com/support/director/examples/Skybox.dir

109ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

A skybox is simply a box seen from the inside. Low-quality textures destroy the illusion of a perfect sky.

The Skybox movie uses a mesh in the shape of a box, viewed from the inside. Each wall of the box has a different shader.

The textures in each shader are carefully designed to fit together perfectly at the seams. The illusion is shattered if

textures and shaders have not been properly prepared in a third-party application. The example creates a sky box from

a model named “Skybox_mesh” in the 3D cast member found in sprite 1. You can place this code in a beginSprite()

handler in a behavior on the sprite.

vSprite = sprite(1)
vMember = vSprite.member
pMainView = vMember.camera(1) -- "DefaultView"
-- Create a new camera and make sure that its view is
-- rendered first
pSkyCam = vMember.newCamera("Skybox")
pSkyCam.fieldOfView = pMainView.fieldOfView
vSprite.addCamera(pSkyCam, 1)
-- As vSprite.camera(1), pSkyCam.rect is set
-- automatically to fill the sprite
-- Ensure that the SkyCam only sees the sky
vSkyBox = vMember.model("Skybox_mesh") -- <HARD-CODED>
-- No other cameras can see vSkyBox...
vSkyBox.removeFromWorld()
-- ... and pSkyCam sees no other models
pSkyCam.rootNode = vSkyBox
-- Ensure that the view from the DefaultView camera is
-- rendered over the top of the view from the SkyCam
pMainView.colorBuffer.clearAtRender = FALSE

This code creates a sky that is good enough for a static world. However, the illusion will be broken as soon as first-

person player moves. You still need to ensure that the camera that renders the sky and the camera that renders the rest

of the world always point in the same direction. You may have noticed the special variables pMainView and pSkyCam.

If you declare these variables as properties in your behavior, you can use an exitFrame() handle to synchronize the

rotation of the two cameras.

110ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

on exitFrame(me) --
-- ACTION: Ensures that the Skybox camera always faces in
-- the same direction as the DefaultView camera,
-- to give the illusion that the sky is part of
-- the world.

pSkyCam.transform.rotation = pMainView.transform.rotation
end exitFrame

For information on how to constrain a first-person camera to the appropriate part of your world, see “Collisions” on

page 279 and “Physics” on page 293. See also this post from Duck.

Hither and yon

A 3D sprite is a window through which you can watch what is happening in a virtual world. You can imagine that the

camera of the 3D sprite represents your eye. Your eye cannot see the 3D sprite window. There is always a slight gap

between the two. There may be models in the virtual world that you cannot see. Models that are behind the camera or

too far to the side are not shown. There may also be objects that come between your eye and the "window". These

objects will not be shown either. If a model comes so close to the camera that it intersects with the window, you may

see gaps appearing in the model.

You can set the distance between your eye and the “window” by setting the hither property of the camera. A more

technical term for this “window” is the hither plane. The hither plane is a plane that is perpendicular to the direction

in which the camera is pointing.

Minimum value of hither

The hither value cannot be less than 1.0 world unit. This has important implications concerning the size of your

models. You will not be able to move the camera closer than 1.0 world unit to any model without holes appearing in

the model.

Note: If your models are very small, and you move the camera close to see them in close-up, you may find holes appearing

in their surface.

If you find yourself stuck with tiny models, you can increase the scale of all models in your world by changing the scale

of group(“World”). However, if you do this, you will probably need to change many other settings in the world.

X-ray vision: using hither creatively

In some situations, a wall or some other object may block the view of the camera. You can adjust the camera's hither

value so that no part of the wall is visible, and the scene on the far side is clearly visible. You can also use hither to create

cut-away views of objects.

Yon

The yon plane is further away than the hither plane. The 3D sprite will not show any model faces that are further away

from the camera than its yon plane. Imagine a spaceship flying through a field of asteroids. If the value of yon is high,

the Director playback engine renders every asteroid in front of the spaceship. Distant asteroids may appear smaller

than a pixel, but the playback engine will process them anyway. You can improve playback performance by setting yon

to a lower value. You may need to experiment to get the value just right. If you set the value of yon too low, big asteroids

may suddenly appear out of nowhere.

http://www.directorforum.com/showthread.php?t=3729&page=3

111ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Fog

In the real world, you can hold your hand up in front of you and look at a distant scene behind your hand. Your hand

will be out of focus. If you focus on your hand, the distant scene will become a blur of colors. You can judge the distance

to an object that is close to you by how much work your eyes have to do to focus on it.

If there is a lot of dust or moisture in the air, the brightness of colors in the distance is decreased. You can use the

vividness of colors to judge just how far is a distant object.

In a virtual 3D world, everything is always in focus, regardless of the distance, and there is no dust. Nonetheless, you

can use camera.fog to blur distance objects and attenuate their colors. In a Shockwave 3D world, fog can be any color.

The most subtle effects occur when you choose a color very close to the background color of the member. Fog is applied

to the faces of models, and not to background, backdrops, or overlays.

Properties

You cannot access camera.fog directly. If you try to do so, a script error occurs.

You can access the properties of camera.fog, but not the fog object itself

• fog.enabled can be TRUE or FALSE. It allows you to toggle on and off the use of fog. The default value is FALSE.

• fog.color defines the color of the fog. The default value is color(0, 0, 0) or black. For most natural results, use a

value that is close to the member3D.bgColor of the 3D cast member.

• fog.far defines the distance in world units from the camera where the fog reaches 100% opacity. Any model face

that is more than fog.far away from the camera will be set to fog.color. The colors applied to the face by its shader

and texture will be completely ignored. The default value is 1000.0.

• fog.near only has an effect if fog.decay mode (see below) is set to #linear. In this case, fog.near defines the distance

in world units from the camera at which fog starts to be applied to models. If fog.near is greater than fog.far the

foreground will be filled with fog but the zone beyond fog.near will be clear. The default value is 0.0.

• fog.decayMode can take three different values:

• #linear: the fog density is linearly interpolated between fog.near and fog.far.

• #exponential: fog.far is the saturation point; fog.near is ignored.

• #exponential2: as with #exponential, fog.far is the saturation point; fog.near is ignored. The difference is that fog

in the foreground will be less dense.

The default setting for this property is #exponential.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6b34.html

112ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Note: If you use the same color for fog as for the bgColor of your 3D cast member, you may wish to set the yon property

of the camera to the same value as fog.far. See “Hither and yon” on page 110 for more details.

Overlays and backdrops

Overlays and backdrops are rectangular 2D areas that you can place in a camera view of the world. Backdrops are

rendered to the camera view after the background fill color, but before any of the 3D models. Backdrops thus appear

behind all models.

Overlays are rendered to the camera view after all the 3D models have been rendered. Overlays thus appear on top of

all 3D models.To experiment with all the properties of a camera.overlay, download the movie Overlay.dir and launch it.

You can set the loc, regPoint, source, scale, rotation, blend of an overlay or backdrop.

D sprites rotate around their regPoint. Overlays and backdrops always rotate around their center. The regPoint

property of overlays and backdrops is a misnomer. The regPoint property of an overlay indicates indirectly where the

center of the overlay is compared to the loc of the overlay within the camera.rect. The same is true for backdrops. See

“Properties for overlays and backdrops” on page 114 for more details. You can find a Parent Script called “Rotatable

Overlay” in the Overlay.dir movie. Create an instance of this script and use it to control the rotation of an overlay

around a point other that its center.

The properties and methods of overlays and backdrops are very similar. In this article, all the examples are written for

overlays. To perform the same operations with backdrops, simply replace the string “overlay” with “backdrop”

wherever it appears in the examples.

Displaying textures

Overlays and backdrops display textures. Textures are always rectangular and always have dimensions that are a power

of 2 (1, 2, 4, 8, 16). To create overlays and backdrops of different shapes and proportions, you can use textures with

alpha transparency. For more information on textures, see “Textures” on page 141.

Adding an overlay to a camera

To add an overlay to a camera, you can use either camera.addOverlay() or camera.insertOverlay(). The addOverlay()

method places the overlay on top of all existing overlays. The insertOverlay() method inserts the overlay at the given

layer in the overlay rendering sequence. Overlays at that layer and in higher-numbered layers are moved up one layer

to make room for the inserted overlay.

The following example creates an overlay in the camera of sprite(1), using a texture named “Overlay1” (texture 2 in

the 3D cast member). It places the top left corner of the texture at point(32, 56). The overlay is not rotated.

http://www.adobe.com/support/director/examples/Overlay.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c32.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c30.html

113ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo
v3DSprite = sprite(1)
v3DMember = v3DSprite.member
vTexture = v3DMember.texture("Overlay1")
vLoc = point(32, 56)
vRotation = 0
v3DSprite.camera.addOverlay(vTexture, vLoc, vRotation)
// JavaScript
v3DSprite = sprite(1);
v3DMember = v3DSprite.member;
vTexture = v3DMember.getPropRef("texture", 2);
vLoc = point(32, 56);
vRotation = 0;
v3DSprite.camera.addOverlay(vTexture, vLoc, vRotation);

Counting overlays or backdrops for a given camera. When you add a new overlay or backdrop in Lingo you can use

the camera.overlay.count or camera.backdrop.count property to determine which layer the overlay or backdrop was

added to.

In JavaScript, the equivalent expressions are camera.count(“overlay”) and camera.count(“backdrop”). The following

example obtains the index number of the most recently added overlay, and sets the scale of that overlay to 0.5:

-- Lingo
vCamera = sprite(1).camera
vCamera.addOverlay(vTexture, vLoc, vRotation)
vIndex = vCamera.overlay.count
vCamera.overlay[vIndex].scale = 0.5
// JavaScript
vCamera = sprite(1).camera;
vCamera.addOverlay(vTexture, vLoc, vRotation);
vIndex = vCamera.count("overlay");
vCamera.getPropRef("overlay", vIndex).scale = 0.5;

Inserting an overlay

The following example inserts an overlay with the same texture as used in the previous example at the same loc. It

inserts the overlay into layer 1, pushing the previous overlay up into layer 2. The new overlay (in layer 1) is rotated

through 30 degrees around its center. It is partly hidden behind the non-rotated overlay.

-- Lingo
v3DSprite = sprite(1)
v3DMember = v3DSprite.member
vTexture = v3DMember.texture("Overlay1")
vLoc = point(32, 56)
vRotation = 30
v3DSprite.camera.insertOverlay(1, vTexture, vLoc, vRotation)
// JavaScript
v3DSprite = sprite(1);
v3DMember = v3DSprite.member;
vTexture = v3DMember.getPropRef("texture", 2);
vLoc = point(32, 56);
vRotation = 30;
v3DSprite.camera.insertOverlay(1, vTexture, vLoc, vRotation);

Removing an overlay

Use camera.removeOverlay() to remove an overlay from a camera. The following example removes the overlay in

layer 1 from the camera of sprite 1:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c2e.html

114ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Note: If the camera of sprite 1 does not currently display any overlays, this code fails silently.

-- Lingo
sprite(1).camera.removeOverlay(1)
// JavaScript
sprite(1).camera.removeOverlay(1);

Adding, inserting and removing backdrops

The equivalent methods for backdrops are:

• camera.addBackdrop()

• camera.insertBackdrop()

• camera.removeBackdrop()

Properties for overlays and backdrops

When you add or insert an overlay of backdrop, you manually set the following properties:

• source: The texture displayed in the overlay or backdrop

• loc: The position within the camera.rect which corresponds to the regPoint (see below) of the overlay or backdrop

• rotation: the rotation of the backdrop around its center

The following properties are set to default values:

• scale: A positive floating-pointing number. You can scale a 3D model along three axes (x, y and z). The scale of an

overlay or backdrop is a single number that applies to both the horizontal and vertical axis. You cannot change the

proportion of the texture. The default value is 1.0.

• regPoint: A point relative to the top left corner of the unrotated overlay or backdrop. The overlay or backdrop is

positioned first with its regPoint at the chosen loc within the camera view, and then it is rotated around its center.

See “Rotating overlays and backdrops” on page 116 for more information on this feature.

• blend: A floating-point number between 0.0 (completely transparent) and 100.0 (completely opaque).

Accessing an overlay or backdrop in a particular layer

You cannot obtain a pointer to a particular overlay or backdrop in Lingo or JavaScript syntax. The following

illustration shows that doing so leads to a script error:

You can access the properties of an overlay or backdrop, but not the overlay or backdrop itself

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c33.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c31.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c2f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c27.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c2b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7e93.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-789e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f6e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c2c.html

115ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

If you need to make several changes to the same overlay, you need to refer to camera.overlay[layerIndex] (Lingo)

or camera.getPropRef("overlay", layerIndex) (JavaScript) each time.

The following example below adds a new overlay, determines which layer the overlay was added to, and sets the scale,

regPoint and blend properties of the new overlay:

-- Lingo
v3DSprite = sprite(1)
v3DMember = v3DSprite.member
vCamera = v3DSprite.camera
vTexture = v3DMember.texture(2)
vLoc = point(50, 50)
vRotation = 90
vCamera.addOverlay(vTexture, vLoc, vRotation)
vIndex = vCamera.overlay.count
vCamera.overlay[vIndex].scale = 0.5
vCamera.overlay[vIndex].regPoint = (vTexture.member).regPoint
vCamera.overlay[vIndex].blend = 25 -- %
// JavaScript
v3DSprite = sprite(1);
v3DMember = v3DSprite.member;
vCamera = v3DSprite.camera;
vTexture = v3DMember.getPropRef("texture", 2);
vLoc = point(50, 50);
vRotation = 90;
vCamera.addOverlay(vTexture, vLoc, vRotation);
vIndex = vCamera.count("overlay");
vCamera.getPropRef("overlay", vIndex).scale = 0.5
vCamera.getPropRef("overlay", vIndex).regPoint = (vTexture.member).regPoint
vCamera.getPropRef("overlay", vIndex).blend = 25;

Note: The expression (vTexture.member).regPoint gives an error if parentheses are not used.

Finding a particular layer

There is no built-in method for keeping track of which layer contains a given overlay. If you use overlays and

backdrops intensively, you can create your own “layer manager” scripts. For less intensive use, where the only one layer

uses a particular texture, you can use a handler such as this:

-- Lingo
on GetOverlayIndex(aCamera, aTexture) --------------------------
-- INPUT: <aCamera> must be a 3D camera object
-- <aTexture> must be a texture object
-- OUTPUT: Returns the index number of the topmost overlay
-- that contains the given texture

ii = aCamera.overlay.count
repeat while ii

if aCamera.overlay[ii].source = aTexture then
exit repeat

end if
ii = ii - 1

end repeat
return ii

end GetOverlayIndex

116ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Dynamic overlays and backdrops

You can create overlays and backdrops that display animated 2D images. All you need to do is to update the texture

that is displayed by the overlay or backdrop, and its image will update automatically. You can see an example of this

with editable text in “Text in overlays and backdrops” on page 116.

Rotating overlays and backdrops

The built-in rotation feature is fine if you simply want to place a static overlay or backdrop at a particular angle. For

dynamic rotation, you may need a different solution. To simulate the needle on a speedometer, for example, you may

need to rotate the overlay or backdrop around its regPoint. The solution is to roll your own rotation code.

To see an example script, download the movie RotateOverlay.dir. This includes a Movie Script with a handler named

OverlaySetRotation(). You can use this handler to rotate an overlay around its regPoint.

A call to OverlaySetRotation() rotates an overlay about its regPoint

Drag the slider button to rotate the overlay. The regPoint of the blue overlay is set to the regPoint of the Needle

vectorShape member. If you change the regPoint of the member and relaunch the movie, the overlay rotates around

its new regPoint.

Text in overlays and backdrops

For most of your text requirements, Director's 2D text and field members provide everything you need. Sometimes,

however, you may need to display 2D in a 3D environment. To do so, you can use overlays and backdrops. Overlays

and backdrops display textures. You can set the member of a texture to any cast member that has an image property,

including Text members. To make the text look crisp when it is used in a texture, ensure that the rect of the Text

member has dimensions which are a power of 2.

The following example sets the rect of the Text member "Text" to rect(0, 0, 128, 256):

http://www.adobe.com/support/director/examples/RotateOverlay.dir

117ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo
vMember = member("Text")
vMember.boxType = #fixed
vMember.width = 128
vMember.height = 256
put vMember.rect
-- rect(0, 0, 128, 256)
// JavaScript
vMember = member("Text");
vMember.boxType = symbol("fixed");
vMember.width = 128;
vMember.height = 256;
trace(vMember.rect);
// <rect(0, 0, 128, 256)>

Note: If you try to set the rect of a text member directly, the width of the cast member gets set, but its height remains

unchanged. If you change the width and the height explicitly, then the rect of the text member is set correctly.

You can even simulate editable text in an overlay. To do this, place a text sprite over the 3D sprite at the position where

you want to see the text. Create an overlay containing the image of the text member inside the 3D camera view. Each

time the user presses a key, update the texture that is displayed in the overlay. To see this technique in action, download

the movie EditableOverlay.dir and launch it. Click in the text area and start typing.

An overlay in the 3D sprite displays a texture that uses the image of an editable text member

When the mouse pointer moves over the editable text sprite, the cursor changes to the text insert cursor.

Note: When you click in the text sprite or make a selection, the insertion point or current selection is not displayed. You

can create a more elaborate version of the Editable Overlay behavior if the insertion point information is necessary. See

Manipulating text with Lingo or JavaScript syntax for more information.

In the behavior extract below, pTexture is a pointer to the texture in the 3D member which is displayed in the overlay,

and pTextMember is the Text member which is placed on top of the 3D sprite. This extract is found in a behavior

attached to the Text sprite.

on keyUp(me) --
-- ACTION: Refreshes the texture of the overlay to show the
-- latest text in the editable text member. The
-- overlay will update automatically.

pTexture.member = pTextMember
end keyUp

The paler rectangle around the text is created by a separate overlay.

http://www.adobe.com/support/director/examples/EditableOverlay.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b42e3d6e8611d55854c94-7ff1.html

118ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Interacting with overlays and backdrops

You can create features that allow end-users to interact with overlays and backdrops in a variety of ways. This article

presents four examples:

• Progress bar

• Moving an overlay with the mouse

• Rollover tool tip

• 2D buttons in a 3D world

There are many other possible uses for backdrops and overlays.

Progress bar

You can use progress bars to indicate a waiting period or a value for a property such as Life Force. To see an example,

download the movie ProgressBar.dir and launch it.

A progress bar created from a texture with a semi-transparent image

The progress bar is created from an image object. The alpha channel of the image object is filled with black for the

opaque parts and light gray for the semi-transparent part. The image is applied to a texture, and the texture is used in

an overlay. See the OverlaySetProgress() handler in the Progress Bar behavior for details.

Moving an overlay with the mouse

You can move an overlay around by changing the value of its loc property. To see an example where an overlay follows

the position of the mouse pointer, download the movie DragShaderColor.dir and launch it.

A 2D sprite and a 3D overlay with the same image move together to give the appearance of a single element

http://www.adobe.com/support/director/examples/ProgressBar.dir
http://www.adobe.com/support/director/examples/DragShaderColor.dir

119ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Rollover tool tip

You can use overlays and backdrops to display text that is generated on the fly and placed at arbitrary positions in the

3D camera view. To see this technique used to create rollover tool tips, download the movie 3DTooltip.dir and launch it.

The movie 3Dtooltip.dir generates images for an overlay on the fly with the help of a text cast member

In the 3DTooltip.dir movie, the text for the tool tips is stored in the userData list of each of the models.

2D buttons in a 3D world

The easiest way to create buttons in the 3D world is to use ordinary 2D sprites. You can place these on top of a 3D

sprite that is set to display directToStage. The 3D sprite appears in front of the buttons, but the buttons receive any

mouse events such as mouseEnter or mouseDown. To make the buttons visible, you can tell the 3D camera view to

display an overlay at the same location as the 2D button.

To see this in practice, download the movie PickActionButtons.dir and launch it.

2D sprites in higher-numbered channels tell the 3D camera view to display overlays based on user interaction

The movie PickActionButtons.dir contains a set of scripts that can be applied to buttons in either a 2D or 3D

environment.

The overlay button behavior set

http://www.adobe.com/support/director/examples/ 3DTooltip.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bee.html
http://www.adobe.com/support/director/examples/PickActionButtons.dir

120ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

These include the following behaviors:

• Overlay Push Button

• Overlay Toggle Button

• Overlay Radio Button

There are also two Parent Scripts. One or other of these scripts is used as the ancestor to each button behavior.

• Overlay Button: Creates an overlay in a 3D sprite if it happens to overlap the button

• Overlayer Button: Uses a sprite in the next highest-numbered channel for text or icon. (The Overlayer Button

behavior is not demonstrated in this movie).

The PickActionButtons.dir movie also demonstrates the Pick Action behavior. This allows you to add script instances

to models in much the same way that you add behaviors to 2D sprites. For more information on this technique, see

“Picking” on page 242.

Lights

Lights illuminate the 3D world and the models in it. Without lights, the world exists, and actions can take place, but

users see nothing. You can add lights to your 3D world in your 3D modeling application and with the Property

inspector or with Lingo or JavaScript™ syntax.

You can find an overview of how light is simulated in a 3D world at “Simulated light” on page 41. Shockwave 3D

provides the following types of light sources:

• “Ambient light” on page 123

• “Directional lights” on page 124

• “Point lights” on page 125

• “Spot lights” on page 126

• “Interactions with shaders” on page 123

• “How faces are lit” on page 127

• “Specular Light” on page 130

You can find an overview of the different types of light used in Shockwave 3D at “Light sources” on page 42. This

section provides you details about how each type of light functions. It also explains how shaders and meshes react to

light sources, and about creating the illusion that objects are shiny.

Note: Lights in Shockwave 3D pass through all models and do not cast shadows. For more information on the limitations

of the Shockwave 3D light simulation process, see “The shortcomings of lighting in Shockwave 3D” on page 44.

Demo movie

To experiment with lights, download the movie Lights.dir and launch it.

http://www.adobe.com/support/director/examples/Lights.dir

121ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Use the pop-up menu to select one of the five lights in the movie Lights.dir and set its properties

The movie Lights.dir shows four views into the same 3D world:

• Top left: Orthographic front elevation view down the x-axis

• Top right: Orthographic side elevation down the y-axis

• Bottom left: Orthographic plan view down the z-axis

• Bottom right: Perspective cavalier view

Note: The z-axis points upwards.

You can use the pop-up menu at the top right to select which light you wish to study. In the three orthographic views,

a red cone shows the position and orientation of the selected light. The tip of the cone points in the same direction as

the selected light. In the illustration above, the light(“UIAmbient”) is pointing directly downwards along the z-axis.

You can drag the red cone around to change the position of the light in the world.

Light properties

The column at the right allows you to set all the properties for the selected light. All lights have the same seven

properties. Most lights ignore at least some of the properties that you can set. Only #spot lights react to all the

properties of a light object.

122ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The control panel for light properties in the Lights.dir movie

Lights have five light properties and two node properties that can alter their effect on models:

• color: Determines the hue and the intensity of the light.

• specular: Determines if the light produces highlights when light rays bounce off a shiny surface. Ignored by

#ambient lights.

• attenuation: Determines how the light gets dimmer with distance. Applies only to #point and #spot lights.

• spotAngle: Determines the angle of cone of light from a #spot light. Ignored by all lights except #spot lights.

• spotDecay: Determines whether the outside edge of the cone of #spot light is hard or soft. Ignored by all lights

except #spot lights.

• rotation: (node property) Determines the direction in which the light is pointing. Ignored for #ambient and #point

lights. For #directional lights, all light rays have the same rotation. For #spot lights, the rotation gives the direction

of the rays at the center of the cone

• position: (node property) For #point and #spot lights, the position of the light in world space determines the angle

at which the light's rays strike each face of each model. Ignored for #ambient and #directional lights.

Demo controls

In the Lights.dir demo movie, when you select a light in the pop-up menu, certain controls may appear grayed out.

These are the controls that are ignored for that type of light. All controls work even if they are grayed out. You can use

this to check that setting these properties has no effect on lights of the selected type.

You can set the color of a light by dragging the red, green, and blue sliders separately. If you hold the Shift key down

while you are dragging, all three sliders adopt the same value. This will give you “white” light of varying intensity.

Drag the pinhead in the Rotation control to set the rotation of the selected light. Watch the front elevation view at the

top left as you drag the pinhead. The red cone in this view will point in the same direction. This control allows you to

rotate the pinhead around one hemisphere only. You cannot use this control to point the light towards the camera in

top left view. Drag the red cone around in the orthographic views in order to change the position of the selected light.

To change the attenuation, type numbers in to the appropriate fields. An attenuation of vector(0.0, 0.0, 0.0) is not

permitted. If you enter such a value, the last acceptable value will be restored.

http://www.adobe.com/support/director/examples/Lights.dir

123ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Click here for further reading on this topic.

Interactions with shaders

Lights interact with the shaders on models in order to produce the rendered image. Specific light properties interact

with specific properties of #standard and #painter shaders.

The result of the interaction depends on the overlap between the light color and the color of the shader property. For

instance, a light color of rgb("#FF9900") and a shader property color of rgb("#33FF66") result in a color of

rgb("#339900"). In this case, the minimum of each color will be used.

Note: The #engraver and #painter shaders ignore the color of lights altogether. Their diffuse property only reacts to the

rotation of #directional lights, not their color.

Ambient light

By default, every 3D cast member has one ambient light object: light(“UIAmbient”). Generally, you do not need more

than one ambient light. The ambient light determines how dark the shaded areas will appear.

By default, the UIAmbient light is black. This means that shaded areas will be 100% black. If you increase its brightness,

shaded areas will appear gray. The position and orientation of the ambient light has absolutely no importance.

For a given shader, ambient light affects all faces equally, regardless of their orientation in space. If a scene is lit only

with ambient light, there will be no change shading between surfaces. The scene will appear flat.

To experiment with lights, download the movie Lights.dir and launch it. The controls for the ambient light will be

selected by default. You may wish to make the light(“Directional_1”) black in order to see the effect of the ambient

light on its own.

Ambient light colors all surfaces equally, regardless of their orientation

The image above uses an unnatural green ambient light to illustrate how the color is applied equally.

http://www.adobe.com/support/director/work_3d/models_use_in_sw/models_use_in_sw06.html
http://www.adobe.com/support/director/examples/Lights.dir

124ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Ambient property

The only active property for ambient light is light.color.

To get the most realistic effect in your 3D world, the ambient light must be the same color as your main directional

light. Ambient lights ignore all other properties that you set for a light object.

Ambient color of #standard shaders

Only #standard shaders react to ambient light. All other shaders ignore it. Standard shaders have an ambient color

property. This determines how the shader reacts to ambient light. If the ambient light is yellow (red + green) and the

shader's ambient color is magenta (red + blue), then all faces with that shader will be tinted red. The green channel of

the ambient light will be ignored, and there will be no blue light for the shader to react to.

If the ambient light is a shade of gray (equal amounts of red, green, and blue), then all faces with the shader will be

tinted magenta. Normally the ambient color of a #standard shader will be a shade of gray. The default value is

rgb("#3F3F3F). For more information on the properties of shaders, see “Shaders and appearance modifiers” on

page 130.

Directional lights

A directional light acts as if its rays travel in parallel from infinity in the direction of the light's negative z-axis (from

positive to negative). A directional light creates an effect of light and shade that enhances the illusion of three

dimensions.

Changing the position of a directional light has no effect. Changing the rotation of a directional light will change the

way it illuminates each triangular face of the models in the 3D world. To get the most realistic effect in your 3D world,

the ambient light needs to be the same hue as your main directional light.

To experiment with directional lights, download the movie Lights.dir and launch it.

Directional lights create an effect of light and shade, due to the angle of incidence of the light on each surface.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b42e3d6e8611d55854c94-7ff0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75a4.html
http://www.adobe.com/support/director/examples/Lights.dir

125ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The movie contains two directional lights: Directional_1 and Directional_2. You can set these to different colors at

different rotations to observe the effect.

Directional lights at different rotations have different effects on different faces

Directional light properties

You can set three properties for directional lights objects:

• light.color

• light.specular (See also “Specular Light” on page 130)

• node.rotation

Point lights

A point light sends out light rays in all directions from a given position in 3D space. A point light's attenuation property

can be set so that its effect diminishes with distance. Changing the rotation of a point light has no effect. Changing the

position of a point light will change the angle at which its rays fall on each triangular face of the models in the 3D world.

To experiment with a point light, download the movie Lights.dir and launch it.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b42e3d6e8611d55854c94-7ff0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bea.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf4.html
http://www.adobe.com/support/director/examples/Lights.dir

126ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Point lights illuminate the world like a naked electric bulb, sending out light rays in all directions from a point.

Before selecting the Point light in the pop-up menu, you may wish to select the UIAmbient and Directional_1 lights,

and set their color to black. This will allow you to see the effect of the point light on its own.

Point light properties

You can set four properties for directional lights objects:

• light.color

• light.specular (See also “Specular Light” on page 130)

• node.position

• node.attenuation

The attenuation property takes the form of a vector because it has three numerical values. Its default value is vector(1.0,

0.0, 0.0). This makes it maintain its brightness regardless of its distance from the target surface. To make a Point light

act more like a real light bulb, try setting its attenuation to a value such as vector(0.0 0.01, 0.0) or vector(0.0 0.0,

0.0001). These values make its effect less noticeable the further away it is from a given surface.

Spot lights

A spot light sends out a cone of light from a given position in 3D space. You can set a spot light's attenuation property

so that its effect diminishes with distance. You can set its spotAngle property to make its cone of light wider or

narrower. Changing the rotation of a spot light changes the direction of the cone of light. Changing the position of a

point light determines which faces of the models in the 3D world its rays will fall on. To experiment with a spot light,

download the movie Lights.dir and launch it.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b42e3d6e8611d55854c94-7ff0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bea.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7284.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7ff9.html
http://www.adobe.com/support/director/examples/Lights.dir

127ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Spot lights illuminate the world like a flashlight, sending out light rays in a cone from a point.

Before selecting the Spot light in the pop-up menu, you may wish to select the UIAmbient and Directional_1 lights,

and set their color to black. This allows you to see the effect of the spot light on its own.

Spot lights are the most complex light source in Shockwave 3D. Calculating the effect of a spot light requires more

computing time than for any other type of light. So, use spot lights only when their additional features are essential. As

you experiment with the spot light in the Lights.dir movie, you may notice that certain triangular faces light up more

readily than others. To know more about why this happens and the spotDecay property, see “How faces are lit” on

page 127.

Spot light properties

You can set seven properties for directional lights objects:

• light.color

• light.specular (See also “Specular Light” on page 130)

• light.attenuation

• light.spotAngle

• light.spotDecay (See also How faces are lit)

• node.rotation

• node.position

How faces are lit

When you use a spot light, sometimes faces that you expect to be lit remain dark. If this happens, you may need to

divide the faces up into smaller triangles. A face is lit if at least one of its vertex points is visible to a light source. If all

vertex points are lit, then the brightness is spread evenly across the face.

http://www.adobe.com/support/director/examples/Lights.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b42e3d6e8611d55854c94-7ff0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bea.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b98.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7284.html

128ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

If only one or two vertex points are lit, then the other vertices appear dark; the lighting creates a gradient across the

face. This is only an issue with spot lights. A spot light produces a cone of light. One vertex of a face may fall inside the

cone while the other vertices fall outside it. If a face is particularly big and if it is directly in front of the spot light, the

face can fail to light up at all. The cone of light can miss all three vertex points, even if the middle of the triangular face

is directly in line with the beam. To see a demonstration of this effect, download the movie SpotTest.dir.

A spot light lights up faces whose vertices are within the cone of light

The SpotTest.dir movie shows a plane model that is perpendicular to the camera and to a spot light. Using the mouse

you can change two parameters:

• The distance from the plane to the spot light by moving the mouse pointer horizontally.

• The spotAngle of the spot light by moving the mouse pointer vertically.

The red line across the 3D sprite indicates the combination of distance and spotAngle at which the corners of the plane

are just lit. If the mouse pointer is above or to the left of this line, the corners of the plane model are not lit, and the

spot light fails to light the plane completely.

When you launch the movie, the plane's modelResource has only two vertices horizontally and two vertices vertically.

In other words, its only vertices are in the corners. If you move the mouse pointer below the red line, the plane model

will be fully lit. If you move it above the red line, it will not be lit at all.

You can create a more graduated response by dividing the plane into smaller triangles. The screenshots above shows

which triangular faces will be lit by a particular cone of light from a spot light.

SpotDecay

Even with fairly small faces, the edges of the cone look very hard and rough. You can soften the edges by setting the

spotDecay property of the spot light to TRUE. The following screenshots show the same distance and spotAngle

settings as in the screenshots above, but with the spotDecay set to TRUE.

http://www.adobe.com/support/director/examples/SpotTest.dir

129ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Setting a spot light's spotDecay property to TRUE softens the edges of its beam

If you look closely at the two screenshots that show the wireframes, you will see that the lit area is the same, but outer

edges have been reduced to darkness. To give the effect of a soft-edged cone with the same illuminating power from

the same distance, you can increase the spotAngle of the spot light, as the comparison below shows.

To illuminate the same area with spotDecay set to TRUE, increase the spot

To increase the number of faces displayed by a model, you can use the Subdivision Surfaces modifier (SDS). See

“Modifiers” on page 50 for more details.

Using shader layers to simulate and enhance lighting

You can create a brightly-lit 3D world with no lights at all by using baked textures and shaders whose emissive property

is set to rgb("#FFFFFF").

A 3D world with baked textures and no lights

You can also use the multiple layers of a shader object to provide additional cues about light sources. This article

provides you with an example of what you can achieve.

http://www.robotduck.com/content/articles/director/3d/hdr/process/index.htm

130ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Specular Light

Specular light means light that is reflected from a mirror-like surface. (The Latin word for “mirror” is “specularis”).

Specular highlights are created by interaction between a light and a shader. All lights except ambient lights have a

specular property. This is set to TRUE by default. If you set it to FALSE for a particular light, that light stops being

“shiny”. It will not create any specular highlights on any shiny objects.

Directional lights, point lights, and spot lights all send out rays of light that have a direction. These types of light can

produce both diffuse light and specular light. The color and intensity of the diffuse light for a given surface depends

only on the angle that the surface makes to direction of the light's rays. For specular light, the angle of observation is

also important. Specular light requires more calculations. It simulates the shininess of objects, and so makes them look

more real.

Specular light does not make objects look more three-dimensional. If your 3D movie is running on a slow computer,

you can save processor cycles by:

• Setting individual light objects so that they trigger no specular calculations

• Setting individual shaders not to react to specular light

Using specular light

To get specular light to work in Shockwave 3D, several conditions need to be met:

• At least one light in the scene must have its light.specular property set to TRUE (the specular property of ambient

lights is ignored).

• The shader must have a non-zero value for its shader.shininess property.

• The shader's shader.specular color must have a non-zero value for all channels (red, green and blue).

• The model must be oriented so that the rays of light from the specular light source bounce from at least one of the

model's faces into the camera.

Note: If you use a color such as rgb("#FF00000") instead of rgb("#FF0101") for the shader's specular property, the specular

feature will no longer function. All color channels (red, green and blue) for the shader's specular property must have a

non-zero value.

Shininess

If a shader's shininess property is set to 0 specular highlights do not appear. If you set its shininess value is set to 1, the

shader will show a large highlit area. Increasing the value to a maximum of 100 will in fact decrease the area of the

highlight.

Performance

Calculating the shape and position of specular highlights requires significant computer processing power. If you are

delivering an application for low-end computers, consider limiting your use of specular highlights.

Shaders and appearance modifiers

A shader is a programming object that defines how the surface of a 3D model appearance reacts to virtual lights.

Shaders define the model’s surface colors and reflectivity. You can use just one shader or more than one. Each mesh

in a model resource can have its own shader. For example, a box may have six different shaders, one for each mesh (a

box is actually composed of six plane meshes carefully arranged).

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bea.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68b0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75a7.html

131ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

If you do not specify a shader, the default #standard shader is used. If the shader’s properties are modified, the change

affects all models that use that shader. Models that are created with script are assigned the standard shader. You can

replace the default shader of a model with any of the other types of shaders.

The following are the different types of shaders:

• “Standard shaders” on page 131

• “Painter shaders” on page 135

• “Engraver shaders” on page 137

• “Newsprint shaders” on page 138

• “Toon modifier” on page 138

• “Inker modifier” on page 140

You can use a #standard shader to create a realistic or imaginary surface for your models. The #painter, #engraver and

#newsprint shaders give more artificial effects.

Director also provides two modifiers that you can add to a 3D model to customize its appearance. These both give a

cartoon-style quality to your 3D world.

Diffuse property for shaders

All four different types of shaders share one property: #diffuse. You can set the value of this property to any color.

However, the #diffuse property reacts differently to light for different shader types. For #standard and #painter

shaders, the #diffuse property determines which color of light is reflected from the surface of the model.

Imagine that a light whose color is set to yellow (rgb(“#FFFF00”)) shines on a #standard or #painter shader whose

#diffuse property is set to cyan (rgb(“#00FFFF”)). The surface of the model appears green (rgb(“#00FF00”)) as this is

where the colors of the light and the shader's #diffuse value overlap. The amount of green light reflected from the

surface from each face depends on the orientation of that face with respect to the light.

Faces turned away from the light shows a darker shade. For #newsprint and #engraver shaders, the #diffuse property

behaves more like the #emissive property for #standard shaders. If the #diffuse property of a #newsprint or #engraver

shader is set to cyan (rgb(“#00FFFF”)), then that is the color that the surface of the model will appear. The shading on

the sides facing away from light a directional light shows a smaller number of pure cyan pixels and more black pixels.

To experiment with this property, see the demo movie at “Shader types” on page 35.

Standard shaders

A #standard shader has five different types of properties, which can be divided into two categories. The properties in

the first category affect the shader as a whole:

• Color properties: ambient, diffuse, emissive, and specular.

• Surface properties: shininess, blend, transparent, renderStyle, flat, and useDiffuseWithTexture.

The surface properties define how the shader interacts with texture images. A shader can display up to 8 different

layers of texture. In practice, only one to five layers are normally used. To imitate certain smooth materials like

plastic or metal, you may not need to use any textures at all.

• Texture properties: texture, diffuseLightMap, reflectionMap, glossMap, specularLightMap

• Layer one properties: blendFunction, blendSource, blendConstant, textureMode, textureRepeat,

textureTransform, wrapTransform

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75a4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75a8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6fe0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75a7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68b0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c2c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7323.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68fb.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a0e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7565.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-743d.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6905.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74ac.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74aa.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7569.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7567.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7562.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6861.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-685e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-729f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-72a4.html

132ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• Layer property lists: blendFunctionList, blendSourceList, blendConstantList, textureList, textureModeList,

textureRepeatList, textureTransformList, and wrapTransformList

Color properties

A #standard shader has four color properties. These properties determine how the shader as a whole reacts to light

sources.

Director uses three different kinds of light sources:

• “Ambient light” on page 123

• Diffuse light: “Directional lights” on page 124, “Point lights” on page 125, and “Spot lights” on page 126

• “Specular Light” on page 130

See “Interactions with shaders” on page 123 for a comparison table. The ambient, diffuse, and specular properties of a

shader determine how the shader reacts to each of these different types of lighting. For example, imagine a shader with

the following properties:

vShader = member("3D").newShader("Example")
vShade.ambient = rgb("#0000FF")
vShade.diffuse = rgb("#FFFFFF")
vShade.specular = rgb("#808080")

This shader only reflects the blue channel of the ambient light. It reflects all of the light from diffuse sources

(directional, point, and spot lights). It reflects 50% of all specular light from diffuse sources whose specular property

is set to TRUE. In other words, it appears blue on faces that are pointing away from any diffuse light source, and it

shows dim specular highlights where a light bounces off its surface directly towards the camera.

Note: If there are one or more textures attached to the shader, and the shader's useDiffuseWithTexture property is set to

FALSE, then the shader does not react to diffuse light. The useDiffuseWithTexture property is FALSE by default on all

new shaders.

Emissive

The emissive property allows you to make a shader glow with its own light. If you want to use a baked texture on a

model, then you must set the emissive property of all its shaders to rgb(“#FFFFFF”).

You can see a demo where the emissive property of a shader is changed to highlight the model under the mouse at

“Pick Action behavior” on page 244.

Surface properties

Surface properties are applied to the whole shader.

• shininess changes how shiny the surface of the model appears to be. A value of 0 creates a matte surface. Values

from 1.0 and 100.0 make the surface shiny to varying degrees, with 1.0 being the most shiny and 100.0 being the

least. A value greater than 0.0, but less than 1.0 is treated is if it were 1.0. The default value for new shaders is 30.0.

The effect of shininess will only be apparent if the specular color of the shader is not black. See also the note below

concerning the flat property.

• transparent and blend determine whether you can see through the surface of the model. The transparent property

can be set to TRUE or FALSE; the blend property can have any value between 0.0 and 100.0. If transparent is FALSE,

then the model will appear opaque, regardless of the value of blend. If transparent is TRUE, then the lower the value

of blend, the more transparent the model will appear. If blend is set to 100.0 then the model will appear fully opaque,

even if transparent is set to TRUE. See the note below about issues with more than one semi-transparent models in

a scene.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7568.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7566.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-756a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6863.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74ad.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-685d.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-72a5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67e9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68b0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7323.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c2c.html

133ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• renderStyle can take three values: #fill, #wire or #point. A renderStyle with a value of #fill will show the surface

of all faces. With a value of #wire, only the edges of faces will be shown. When set to #point, only vertex points will

be shown as a cloud of dots. This can be useful when debugging.

Note: A creative use of the #point render style is to simulate a “Beam me, Scotty” type of animation. You can set the

renderStyle of a character to point, and then use either the #LOD or #SDS modifier to change the apparent number

of vertex points used by the model. Reducing the number of visible vertex points will make the model gradually

disappear.

• flat determines what shading algorithm is used to draw each face. If flat is TRUE, then each face will appear as a

flat triangle. If it is FALSE, curved surfaces will appear to be curved.curved surfaces will appear to be curved. If

performance takes priority over appearance, then you may want to set flat to TRUE, to reduce the processing time

for each face. See Flat shading and smooth shading for more details.

Note: If #flat is set to TRUE, specular highlights do not look natural. It makes sense to set the #shininess of flat shaders

to 0 and to set the #specular property of lights to FALSE.

• useDiffuseWithTexture allows you to get or set whether the diffuse color is used to modulate the texture (TRUE)

or not (FALSE). When set to TRUE, this property works in conjunction with the blendFunction and blendConstant

properties to determine what proportion of the shader's diffuse color and what proportion of the color in the

texture is used for each point on the surface of the model.

Texture properties

To display images on the surface of models, you can attach textures to shaders. You may want to use as many as five

different textures, each with a different purpose. These textures are stored in the different layers of a shader. When you

create a new shader, layer 1 contains the default red-and-white checkered texture, and all the other layers are empty.

• In layer 1, the shader.texture defines the original color of the pixels on the surface of the model, in the absence of

any effects of lights or reflections.

• In layer 2, the shader.diffuseLightMap defines a diffuse light map to be used with the shader, so that differences in

how the environment is lit can be made visible.

• In layer 3, the shader.reflectionMap defines what colors in the environment will be reflected in the shader. It is used

to create metallic and chrome-like effects. You can see examples of what can be achieved with a reflectionMap here:

• http://www.director3d.de/reflectionmap.htm

• http://www.fce.at/7senses/shock/shock10.htm. Press the spacebar to show the configuration options.

• In layer 4, the shader.glossMapdefines which areas of the surface are shiny and which are matte. This texture is used

as a mask for specular highlights. You can use this to simulate a shiny material which has dirt on it in some places.

You must use a grayscale image for this texture.

• In layer 5, the shader.specularLightMap defines the color of the specular highlights at different points on the

surface. When you set the value of any of these properties to a texture object, Director automatically set the

appropriate values in the blendFunctionList and textureModeList for the given layer, at the same time as it adds the

texture. When you set the shader.reflectionMap property to a texture blendSourceList and blendConstantList

for layer 3 are also modified.

Layer properties

For each layer of texture in a shader, you can specify:

• How the texture in that layer blends with the layer below

• What method is used to map the texture onto the faces of the mesh

• How the texture is positioned and scaled and repeated over the faces of the mesh.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68fb.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7fb8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a0e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7565.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7569.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7562.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75a8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bb7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-743d.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6905.html
http://www.director3d.de/reflectionmap.htm
http://www.fce.at/7senses/shock/shock10.htm
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74ac.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74aa.html

134ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The values for the layer properties are stored in linear lists within the shader. (See Layer property lists, below).

You can access the properties in two different ways:

• shader.layerPropertyList[n] provides access to the layerProperty in the nth layer of the shader

• shader.layerProperty provides a shortcut for referring to shader.layerPropertyList[1]

When setting a property, you can set it either for one particular layer, or use a shortcut to set it for all layers

simultaneously. For example, to set the texture in the third layer of the shader aShader to aTexture, use:

aShader.textureList[3] = aTexture

To set the texture in all eight layers of the shader to VOID with one command, use:

aShader.textureList = VOID

Blending with the layer below

Each texture layer can blend with the layer below. Layer 1 can blend with the diffuse color for the shader, if

useDiffuseWithTexture is set to TRUE. If useDiffuseWithTexture is set to FALSE, white is used instead. Each of the

other layers blends with the layers below.

See blendFunction, blendSource, and blendConstant for details.

Mapping onto the mesh

The texture in a given layer can be mapped on to the mesh in a variety of different ways. Some of these reflect the

geometrical shape of the mesh, others are projections from the environment around the mesh.

• #none uses the texture coordinate values defined for the mesh. See “Mapping a texture to a mesh resource” on

page 150 for more details of texture mapping.

• #wrapPlanar, #wrapCylindrical, #wrapSpherical consider the mesh to have certain geometrical properties,

and map the texture onto the mesh accordingly. If you choose one of these values for a given layer, then you can

use the wrapTransform for that layer to rotate the texture to suit the geometry.

• #reflection projects the texture onto the mesh from a fixed orientation to simulate objects in the environment

which are reflected in the surface of the model.

• #diffuseLight, #specularLight create light mapping texture coordinates for each vertex in the mesh. See

textureModeList for more details regarding these values.

Positioning on the mesh

You can use textureTransform to rotate, position and scale the texture relative to the model's mesh. With certain

settings for textureTransform, the texture image may be mapped to only a part of the surface covered by the shader.

You can use textureRepeat to determine whether the texture tiles across the mesh to fill the surrounding blank space,

or whether the edges of the texture are smeared out to fill the blank space. Only five properties of the textureTransform

for a given texture layer will have any effect:

• Use textureTransform.position.x and textureTransform.position.y to move the origin point for

calculating uv positioning. See “Mapping a texture to a mesh resource” on page 150for more details of texture

mapping. The values for uv coordinates range between 0.0 and 1.0. As a result, only the decimal part of the x and y

position co-ordinates will be taken into account. Setting textureTransform.position.x to 0.321 or 654.321 has

exactly the same effect.

• Use textureTransform.scale.x and textureTransform.scale.y to stretch or shrink the texture.

• Use textureTransform.rotation.z to rotate the texture around the uv point [0.0, 0.0] at the bottom left hand corner

of the texture image.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7569.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7567.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7562.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74ad.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-729f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-685e.html

135ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

If you want the texture to appear to rotate around its center, you can set the textureTransform.position to vector(0.5,

0.5, 0), to place the uv point [0.0, 0.0] in the center of the shader. You will probably have to cut the texture into four

equal parts and swap the parts around to obtain the desired effect.

Adjusting the wrapping

If you set the textureMode of a given layer #planar, #spherical, or #cylindrical, then you can use the wrapTransform

for that layer to rotate the texture so that it fits the geometry of the mesh correctly. Only modifying the rotation or

axisAngle properties of the wrapTransform will have any effect. Altering the position or scale of a wrapTransform will

make no difference to the appearance of the shader.

Note: aShader.wrapTransformList[textureLayerIndex] has an effect only when

aShader.textureModeList[textureLayerIndex] is set to #planar, #spherical, or #cylindrical.

Layer property lists

The values for all the texture layer properties are stored in linear lists as part of the shader object.

• blendFunctionList

• blendSourceList

• blendConstantList

• textureList

• textureModeList

• textureRepeatList

• textureTransformList

• wrapTransformList

To get or set a given property for a particular layer, use: shader.layerPropertyList[n].

For example:

aShader.blendSourceList[3] = #alpha
put aShader.textureRepeatList[4]

The objects that store layer properties for a shader are not true Lingo lists. You cannot set the value of one of these lists

to a Lingo list. This command gives a Lingo list as the output:

put member("3D").shader(1).textureRepeatList -- [1, 1, 1, 1, 1, 1, 1, 1]

However, the command below will lead to a “Wrong Type” script error:

member("3D").shader(1).textureRepeatList = [1,1,1,1,1,1,1,1]

To set the values in all 8 layers of the shader to a given value with one command, use:

aShader.layerPropertyList = aValue

For example:

member("3D").shader(1).textureRepeatList = 1

Painter shaders

To explore the properties of the Painter shader, download and launch the movie ShaderTypes.dir.

See “Shader types” on page 35for details on how Painter shaders interact with lights. See “Toon modifier” on page 138

for a different way to achieve similar results.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7568.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7566.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-756a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6863.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74ad.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-685d.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-72a5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67e9.html
http://www.adobe.com/support/director/examples/ShaderTypes.dir

136ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Styles and properties

A Painter shader can have one of the following styles:

• #blackAndWhite

• #toon

• #gradient

A Painter shader also has six other properties. None of the styles reacts to all of these properties:

• shadowPercentage (#blackAndWhite and #toon styles only)

• highlightPercentage (#toon style only)

• shadowStrength (#toon and #gradient style only)

• highlightStrength (#toon and #gradient style only)

• diffuse (#toon and #gradient style only)

• colorSteps (#gradient style only)

shadowPercentage and highlightPercentage

The properties shadowPercentage and highlightPercentage are linked. Their total value does not exceed 100. If the

value of one of these properties is set to a higher value, the other will be reduced accordingly. For example, after the

following code has been executed, the value for the highlightPercentage of the Painter shader is reset to 30, to ensure

that the total of the two percentage values does not exceed 100.

vPainterShader = member("3D").shader("Painter shader")
vPainterShader.highlightPercentage = 70
vPainterShader.shadowPercentage = 70
put vPainterShader.highlightPercentage
-- 30

The total of the two percentage values can, however, be less than 100.

vPainterShader.shadowPercentage = 30
put vPainterShader.highlightPercentage
-- 30

Black and white

A Painter shader with a style of #blackAndWhite shows brightly lit areas in white and shaded areas in black. It reacts

to only one property: shadowPercentage. This can take a value between 0 and 100. The higher the value, the higher the

cut-off point between light and dark. A high value gives a very small white area and a big area of black.

Altering highlightPercentage may reset the value of shadowPercentage and so it may appear is if the shader is reacting

to changes in highlightPercentage. However, only the automatically modified value of shadowPercentage actually has

any effect.

Colors for toon and gradient styles

The #toon and #gradient styles react to ambient light. Instead of being completely black, the shadow areas for these

styles are calculated from the ambientColor for the 3D member. The shadow color is calculated as follows:

shadowColor = a3DMember.ambientColor / 4 * shader.shadowStrength

137ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

For example, if the ambientColor for the 3D member is rgb(64, 64, 192) and the shadowStrength for the shader is 2.5,

the shadow color will be rgb(40, 40, 80). Values for red, green and blue will be pinned to 255. If the ambientColor is

rgb(1, 2, 4) and the shadowStrength is 512.0, then the color of the shadow area will be rgb(128, 255, 255). The color of

the bright area depends on three values:

• The color of the highest priority non-ambient light (see “Shader types” on page 35 for details)

• The diffuse color of the Painter shader

• The highlightStrength of the Painter shader

The color is calculated according to the following equation, with individual red, green and blue values pinned at 255:

brightColor = (light.color AND shader.diffuse) *
shader.highlightStrength

Toon

A toon-style shader reacts to the value of five properties:

• shadowPercentage

• highlightPercentage

• shadowStrength

• highlightStrength

• diffuse

The sum of shadowPercentage and highlightPercentage may be less than 100. Unless both values are equal to 50, the

shader produces 3 bands of color:

• A bright area with the color (light.color AND shader.diffuse) * shader.highlightStrength

• A middle area with the color a3DMember.ambientColor / 4

• A shadow area with the color a3DMember.ambientColor / 4 * shader.shadowStrength

If shadowStrength is at its default value of 1.0, then the last two areas will have the same color. If shadowStrength is

less than 1.0, the third area appears as a darker hue. If you decide to make shadowStrength greater than 1.0, the areas

where the shading is supposed to be the darkest appears brighter than the mid zone, which is probably not desirable.

Gradient

A Painter shader with a style of #gradient reacts to four properties:

• shadowStrength

• highlightStrength

• diffuse

• colorSteps

Any faces that are facing away from the highest priority light takes on the shadow color, as described above. All other

faces are assigned to one of the color steps depending on how much directional light falls on the face. The brightest

faces are colored with the highlight color, as described above. The intermediate faces receive a blend of the highlight

and the shadow color, proportional to their exposition to the directional light. The result is a series of bands of color,

with a gradient from the highlight color to the shadow color.

Engraver shaders

To explore the properties of the Engraver shader, download and launch the movie ShaderTypes.dir.

http://www.adobe.com/support/director/examples/ShaderTypes.dir

138ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The #engraver shader gives a monochrome image with old-fashioned cross-hatchings. See “Shader types” on page 35

for details on how Engraver shaders interact with lights.

Properties

An Engraver shader has four properties:

• diffuse (color)

• brightness (float 0.0 - 100.0, default 0.0)

• density (float 0.0 - 100.0, default 40.0)

• rotation (float 0.0 - 360.0, default 0.0)

The value for the diffuse color determines the highlight color for the shader. Brightness indicates the amount of white

blended into the shader. Density adjusts the number of lines used to create the shading. Low values result in few, very

thick lines. High values result in many very fine lines. Rotation indicates the orientation of the lines.

Note: Changing the rotation of an Engraver shader over time makes the model to which the shader is attached appear to

buzz. This can be useful for creating a rollover effect, or for making an object look as if contains some magic power.

Newsprint shaders

To explore the properties of the Newsprint shader, download and launch the movie ShaderTypes.dir.

The #newsprint shader allows you to create monochrome images similar to photos in a newspaper. See “Shader types”

on page 35 for details on how Newsprint shaders interact with lights.

Properties

A Newsprint shader has three properties:

• diffuse (color)

• brightness (float 0.0 - 100.0, default 0.0)

• density (float 0.0 - 100.0, default 45.0)

The value for the diffuse color determines the highlight color for the shader. Brightness indicates the amount of white

blended into the shader. Density adjusts the number of dots and lines used to create the shading. Low values result in

thicker, shorter lines. Values above 8.0 result in many very fine lines.

Toon modifier

The #toon modifier gives a cartoon style of rendering to the model’s surface.

Styles and properties

The Toon modifier has a #style property that can be set to one of three values:

• #blackAndWhite

• #toon

• #gradient

It also has 12 other properties. Only the #toon style reacts to all of these properties.

• shadowPercentage (#blackAndWhite style only)

• highlightPercentage (#toon style only)

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75a8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7434.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6a9a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7e93.html
http://www.adobe.com/support/director/examples/ShaderTypes.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75a8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7434.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6a9a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-687b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7955.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74e8.html

139ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• colorSteps

• shadowStrength (ignored by #blackAndWhite style)

• highlightStrength(ignored by #blackAndWhite style)

• lineColor

• creases

• creaseAngle

• boundary

• lineOffset

• useLineOffset

Note: The Inker modifier features lineColor, creases, creaseAngle, boundary, lineOffset and useLineOffset properties

which function in an identical way to these properties of the Toon modifier. See “Inker modifier” on page 140 for more

details on how these properties work.

shadowPercentage and highlightPercentage

The properties shadowPercentage and highlightPercentage are linked. Their total value may not exceed 100. If the

value of one of these properties is set to a higher value, the other will be reduced accordingly. For example, after the

following code has been executed, the value for the highlightPercentage of the Toon modifier is reset to 30 to ensure

that the total of the two percentage values does not exceed 100.

vModel = member(1).model(1)
vModel.toon.highlightPercentage = 70
vModel.toon.shadowPercentage = 70
put vModel.toon.highlightPercentage
-- 30

The total of the two percentage values can, however, be less than 100.

vModel.toon.shadowPercentage = 30
put vModel.toon.highlightPercentage
-- 30

Note: The shadowPercentage property only has an effect on Toon modifiers with a style of #blackAndWhite. The

higlightPercentage property only has an effect on Toon modifiers with a style of #toon.

colorSteps

This can take the discrete integer values 2, 4, 8 or 16. If you attempt to set it to a value less than 2, a "Value out of range"

script error occurs. If you set it to an integer higher than 2, it takes the next lowest valid value. For example:

vModel = member(1).model(1)
vModel.addModifier(#toon)
vModel.toon.colorSteps = 15
put vModel.toon.colorSteps
-- 8

A Toon modifier with a style of #gradient creates the number of bands of color defined by the value of colorSteps. If

the Toon modifier has a style of #blackAndWhite or #toon, it uses these same bands of color as boundaries between

the highlit and shaded areas. The selection of which boundary to use depends on the value of shadowPercentage (for

the #blackAndWhite style) or highlightPercentage (for the #toon style). These percentage values change the shading

in a stepwise fashion, rather than gradually.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7436.html
http://www.google.co.in/search?hl=en&rlz=1T4GGLL_enIN386&biw=1257&bih=774&sa=X&ei=FY0RTpj7LcL3mAXm66iqDg&ved=0CBYQvgUoAA&q=shadowStrength+adobe+director&nfpr=1
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7435.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7525.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7522.html
http://help.adobe.com/de_DE/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74de.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7403.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7524.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74df.html

140ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

shadowStrength and highlightStrength

For Toon modifiers with a style of #toon or #gradient, these properties determine how much white or black is added

to the shadow or highlight areas. A value of 0.0 or below makes the given area completely black; a value of 1.0 gives it

its natural color, and a value of 5.0 or above makes the area completely white.

For Toon modifiers with a style of #toon, setting the shadowStrength to a value other than 1.0 may result in 3 bands

getting created. These properties are ignored by Toon modifiers with a style of #blackAndWhite. lineColor, creases,

creaseAngle, boundary, lineOffset and useLineOffsetSee “Inker modifier” on page 140 for more details on how the

lineColor, creases, creaseAngle, boundary, lineOffset, and useLineOffset properties work.

Inker modifier

The Inker Modifier is a simpler version of the Toon modifier. It allows you to add creases, boundary lines, and

silhouette lines to the rendered image of a model. These features are shared with the Toon modifier. The Toon

modifier provides additional shading features. This article describes the creases, boundary and silhouette features

shared by both the Toon and the Inker modifier.

For information on the additional features of the Toon modifier, see “Toon modifier” on page 138.

Properties

The Inker modifier and Toon modifier share the following properties:

• lineColor (color)

• silhouettes (boolean)

• creases (boolean)

• creaseAngle (float -1.0 - +1.0, default 0.01)

• boundary (boolean)

• lineOffset (float -1.0 - +1.0, default -2.0)

• useLineOffset (boolean)

lineColor

The lineColor property sets the color for the crease, boundary and silhouette lines.

creases, boundary and silhouette

The creases, boundary, and silhouette properties take a value of TRUE or FALSE. They determine where lines are

drawn on the surface of the model.

• If creases is TRUE, the Toon or Inker modifier draws lines at where two faces meet at an angle. The value of

creaseAngle determines how acute the angle needs to be before a crease line is drawn (see below).

• If boundary is TRUE, the Toon or Inker modifier draws lines wherever two meshes in the model meet.

• If silhouette is TRUE, the Toon or Inker modifier draws lines around the outside edges of the model.

creaseAngle

The creaseAngle property determines how acute the angle between two adjacent triangular faces needs to be before a

crease line is drawn between them. A low value requires the faces to be at a very acute angle. A value of 1.0 will draw

creases even between faces that are in exactly the same plane.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aab.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aa6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7525.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7523.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7522.html
http://help.adobe.com/de_DE/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74de.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7403.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7524.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74df.html

141ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

lineOffset and useLineOffset

If you set lineOffset to TRUE, you can alter the apparent thickness of the creases and boundary lines by altering the

value of lineOffset. You can use values between -100.0 (thickest) to 100.0 (thinnest lines). If you use a value outside

this range, you will provoke a “Value out of range” script error.Note: You may wish to be cautious about using the

lineOffset property, because when the camera is in certain positions, a series of apparently random lines may be drawn

into the 3D sprite when useLineOffset is set to TRUE.

Textures

Textures are images that are optimized for display in a 3D environment. Each shader can have textures applied to it.

Textures are 2D images drawn on the surface of a model. The appearance of the model’s surface is the combined effect

of the shader and textures applied to it. If you do not specify a texture, a default red-and-white bitmap is used. Textures

can also be displayed as 2D overlays and backdrops, or as particles emitted by a particle system.

A texture is an image object stored inside a 3D cast member. Textures can be used in three ways:

• To map an image to the surface of a mesh or to provide information about the material or the environment, inside

one of the texture layers of a shader object, See “Standard shaders” on page 131for details on how to use a texture

inside a shader. See “Mapping a texture to a mesh resource” on page 150 for information on how to prepare a mesh

resource so that the textures inside a shader are displayed correctly.

• As a 2D overlay or backdrop for a camera object. See “Overlays and backdrops” on page 47.

• To provide an image for the particles in a particle emitter object, see “Particles” on page 197.

The treatment of images in a 3D environment makes intensive use of the computer processor, so various techniques

are used to improve performance. The most obvious difference between 3D textures and 2D images is that 3D textures

only have a limited number of possible dimensions. See “Images for textures” on page 144 for more details. Textures

also have a number of properties that tells the video card how much processing to do before displaying them. See

“Texture properties and method” on page 147 for more details.

Texture names

All textures in a given 3D cast member must have unique names. If you try to create a new texture with the same name

as an existing texture, a script error occurs: “Object with duplicate name already exists”. See “3D namespace” on

page 85 for more details.

Accessing a texture

A 3D world exported from a third-party 3D design application is likely to have many textures included within it.

Textures are stored in the texture palette of the 3D cast member and can be referenced:

• By name (Lingo only)

• By index number

For example:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9c.html

142ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo
put member("3D").texture(1)
-- texture("DefaultTexture")
put member("3D").texture("LENOIR")
-- texture("Lenoir")
// JavaScript
trace (member("3D").getPropRef("texture", 1))
// <texture("DefaultTexture")>

Note: You can obtain the name of a texture if you know its index number, but there is no shortcut for finding the index

number of a texture from its name.

When using JavaScript in Director 11.5, there is no way to access a texture by its name. You must use the syntax

a3DMember.getPropRef(“texture”, aIndex).

When you delete a texture, the index numbers of other textures may change. Textures imported in a W3D are already

applied to shaders for different models. Textures for overlays, backdrops, and particle systems can only be applied at

runtime. You can get and set the textures for any of these objects using these expressions:

• aShader.texture

• aShader.textureList[aIndex]

• aCamera.overlay[aIndex].source

• aCamera.backdrop[aIndex].source

• aParticleResource.texture

Here are some examples:

--Lingo
vSprite = sprite(1)
vMember = vSprite.member
put vMember.model(2).shader.texture
-- texture("Wood")
vMember.model(3).shader.textureList = vMember.texture("Stone")
vSprite.camera(2).overlay[3].source = vMember.texture("North")
vMember.modelResource("Fire").texture = vMember.texture("Flame")
// JavaScript
vSprite = sprite(1);
vMember = vSprite.member;
trace (vMember.getPropRef("model", 1).getProp("shader").getProp("texture"));
// <texture("Wood")>
vStoneTexture = vMember.getPropRef("texture", 2);
vMember.getPropRef("model", 1).getProp("shader").setProp("textureList", vStoneTexture;
vNorthTexture = vMember.getPropRef("texture", 3);
sprite(1).camera.getPropRef("overlay", 4).source = vNorthTexture;
Replace sprite(1).camera with an expression exquivalent to sprite(1).camera(2)
vFireParticle = vMember.getPropRef("modelResource", 5);
vFlameTexture = vMember.getPropRef("texture", 6);
vParticle.texture = vFlameTexture

Counting textures

To determine how many textures are stored in the texture palette of a 3D member, you can use the member3D.count

property (Lingo) or the member3D.count() function (JavaScript):

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c26.html

143ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo
put member("3D").texture.count
-- 12
// JavaScript
trace(member("3D").count("texture"));
// 12

Creating textures at runtime

To create a new texture at runtime you can use the function member3D.newTexture(aUniqueName). See “3D

namespace” on page 85 for a Lingo handler that returns a name that you can be sure is not already used for a texture

in the given 3D member.

Providing an image source when creating a new texture

You must provide a string name for the new texture. Optionally, you can provide two additional parameters:

--Lingo
vTexture = member(1).newTexture(aName, #fromImageObject, aImage)
vTexture = member(1).newTexture(aName, #fromCastMember, aMember)
//JavaScript
vTexture = member(1).newTexture(aName, symbol("fromImageObject"), aImage)
vTexture = member(1).newTexture(aName, symbol("fromCastMember", aMember)

If you use #fromImageObject as the second parameter, the third parameter must be an image object. If you use

#fromCastMemberas the second parameter, the third parameter can be any member with an image property. Possible

member types include #bitmap, #flash, #realMedia, #shockwave3d, #text and #vectorShape. See “Images for textures”

on page 144 for more details.

You do not need to indicate an image source for a new texture immediately. You can set the image or member

properties of texture in the next line or later if you wish.

Deleting a texture

To delete a texture, you can use the member3D.deleteTexture() command. You can use either the name or the index

number to identify the texture to delete. If you provide a valid name or index number, the command will return 1. If

not, it will return 0.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bcd.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bdd.html

144ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo
put member("3D").texture.count
-- 3
put member("3D").texture(3).name
-- "DeleteMe"
put member("3D").deleteTexture("DeleteMe")
-- 1
put member("3D").deleteTexture(3)
-- 0
put member("3D").deleteTexture(2)
-- 1
// JavaScript
trace(member("3D").count("texture"));
// 3
trace(member("3D").getPropRef("texture", 3).getProp("name"));
// DeleteMe
trace(member("3D").deleteTexture("DeleteMe"));
// 1
trace(member("3D").deleteTexture(3));
// 0
trace(member("3D").deleteTexture(2));
// 1

Images for textures

The image for a texture can come from one of three different sources:

• #importedFromFile: The texture is imported with a model from a 3D modeling program.

• #fromCastMember: The texture is created from a bitmap cast member using the newTexture() command, or its

member property has subsequently been set to a member with an image property.

• #fromImageObject: The texture is created from a lingo image object using the newTexture() command, or its image

property has subsequently been set to an image object

put member(1).texture(1).type -- default red-and-white texture
-- #importedFromFile
member(1).texture(1).member = member(2)
put member(1).texture(1).type
-- #fromCastMember
member(1).texture(1).image = member(2).image
put member(1).texture(1).type
-- #fromImageObject

Mapping the color information contained in textures onto a dynamic 3D world makes intensive use of the computer

processor. To limit the number of calculations made on each frame, textures are always created with height and width

dimensions that are powers of 2. Powers of 2 are numbers like 1, 2, 4, 8, 16, 32, and so on. For example, you can create

a texture that is 16x256 or 512x64.

If the image or bitmap that you use for a texture does not have pixel dimensions that are a power of 2, both rendering

performance and visual quality decreases. The Director player rounds the dimensions of the image to the nearest

power of 2. This can lead to both stretching and squeezing. For example, an image that is 96 x 97 pixel is squeezed

horizontally and stretched vertically:

145ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

vTexture = member("3D").texture(1)
vTexture.image = image(96, 97, 1)
put vTexture.width
-- 64
put vTexture.height
-- 128

To see a demonstration of poorly dimensioned images for textures, download the movie OverlayDemo.dir and launch it.

An image whose dimensions are not powers of 2 results in a poor quality texture

To ensure that you have the correct dimensions when using text members as the source for a texture image, you can:

• Drag the text member temporarily on to a blank area on the stage

• Use the Text tab in the Property Inspector to set the #boxType of the text member to #fixed

• At the Sprite tab of the Property Inspector, use the W and H fields to set the width and height of the sprite to powers of 2

• Delete the temporary sprite

Creating textures that appear to have custom sizes

To avoid the loss of clarity that is associated with this automatic redimensioning, always use bitmaps or images whose

dimensions are powers of 2. If you wish to create a texture which appears to have different dimensions, you can use an

image with alpha-channel transparency for the parts that you want to make invisible.

The Lingo script below creates an image object that is 64 x 64 and makes most of its pixels red. Next, it creates an alpha

channel that contains a black cross with dimensions of 60 x 60. The rest of the alpha image remains white. The script

then sets the image of the default texture to the 64 x 64 image, and finally it displays the texture as an overlay at the

center of sprite(1).

http://www.adobe.com/support/director/examples/OverlayDemo.dir

146ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

vSprite = sprite(1)
vMember = vSprite.member
vTexture = vMember.texture(1) -- default texture
vImage = image(64, 64, 32, 8)
vImage.fill(rect(0, 0, 60, 60), rgb("#FF0000"))
vAlpha = image(64, 64, 8, #grayscale)
vAlpha.fill(rect(21, 0, 40, 60), rgb("#000000"))
vAlpha.fill(rect(0, 21, 60, 40), rgb("#000000"))
put vImage.setAlpha(vAlpha)
-- 1
vTexture.image = vImage
put vTexture.width, vMember.texture(1).height
-- 64 64
vSprite.camera.addOverlay(vTexture, point(130, 90), 0)
To see the true size of the texture, execute the following line:
vTexture.renderFormat = #rgba5650

This command makes the texture ignore any alpha channel information. To see this script in action, download and

launch the movie NotPowersOf2.dir.

Use an image with a partially transparent alphaChannel to create a texture that appears to be a non-standard size

Images for particle emitters

The texture for a particle emitter resource is mapped onto a square plane. Even if you use a texture whose width and

height are different, the texture will be stretched to fill the square plane.

In order to create particles that do not appear to be square, use an image with an alpha channel that creates a non-

square opaque area. To see an example of this, download and launch the movie Balloons.dir.

http://www.adobe.com/support/director/examples/NotPowersOf2.dir
http://www.adobe.com/support/director/examples/Balloons.dir

147ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

For textures for a particle system, start with a square image and use the alphaChannel to make parts of it invisible

Texture properties and method

Texture objects have nine properties and one method. Three of the properties are read-only:

• texture.type (symbol)

• texture.width (integer)

• texture.height (integer)

These properties are set automatically if you change the image or member properties (see below). You can get and set

the following five properties:

• texture.member (VOID or member reference)

• texture.renderFormat (symbol)

• texture.quality (symbol)

• texture.nearFiltering (boolean)

• texture.compressed (boolean)

One property that you can set but not read is texture.image.

Note: If you try to get the value of the texture.image property, a script error occurs.

Script error when you try to get the value of the texture.image property

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6822.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b4-4fdb6b3c11d55855946-7ed6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b4-4fdb6b3c11d55855946-7ed6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7baa.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6910.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-733b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ace.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9c.html

148ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

scaleDown() method

High quality textures require a lot of space in the video RAM. If the video RAM gets too full, the rendered image can

start getting choppy. You can use texture.scaleDown() to reduce the size of the image used by the texture. This results

a change of quality that is permanent. You have to delete the texture and recreate it to restore it to its original size. For

textures that have a type of #importedFromFile, recreating the texture means reloading the model that uses the texture.

vTexture = member("3D").newTexture("Test")
vTexture.image = image(128, 128, 32, 8)
put vTexture.width, vTexture.height
-- 128 128
vTexture.scaleDown()
put vTexture.width, vTexture.height
-- 64 64
vTexture.scaleDown()
put vTexture.width, vTexture.height
-- 32 32

Instead of using scaleDown(), you may prefer to provide several different external castLibs containing bitmap

members at various sizes. If the user encounters difficulties with rendering all the textures of your 3D world, your

application can select a castLib with images at a less challenging scale, and refresh all the textures whose sizes have

changed.

Setting the member or image properties

You can change the image displayed by a texture by setting its member property to any member that has an image

property. Example member types include:

• #bitmap

• #flash

• #realMedia

• #shockwave3d

• #text

• #vectorShape

You can set the texture.image to any image. For best results, ensure that the dimensions of the member or image are

powers of 2. See “Images for textures” on page 144 for details.

renderFormat

The renderFormat property determines how many bits are assigned to displaying each of the color channels, for red,

green, blue and alpha. The following are the possible settings:

• #rgba4444

• #rgba5551

• #rgba5550

• #rgba5650

• #default

• #rgba8888

• #rgba8880

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7fe4.html

149ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The first four values assign 16-bits to each pixel in the texture image. The last 2 assign 32 bits to each pixel and give a

higher quality rendering at the cost of 4 times as much video RAM.

Values that end with a 0 create opaque textures. These are suitable for use with images saved in a 24-bit format or

lower. The other values provide for transparency, based on information stored in the alpha channel of the image

associated with the texture.

The value #rgba5551 provides a single bit for the alpha channel: all pixels in the texture image are either fully opaque

or fully transparent. The value #rgba4444 allows 16 different values for each channel: 4096 distinct colors at 16 levels

of transparency. The value #rgba8888 gives almost photo-realistic results.

Note: Older video cards may not support all of these formats. You can use the following code to determine what

renderFormats are available on a given machine:

vHardwareInfo = getRendererServices().getHardwareInfo()
put vHardwareInfo.supportedTextureRenderFormats
-- [#rgba8888, #rgba8880, #rgba5650, #rgba5551, #rgba5550, #rgba4444]

The value #default is a shortcut to the value set for getRendererServices().textureRenderFormat. By default, this is

#rgba5551, but you can set it at any time.

put getRendererServices().textureRenderFormat
-- #rgba5551
getRendererServices().textureRenderFormat = #rgba4444
put getRendererServices().textureRenderFormat
-- #rgba4444

See textureRenderFormat for more details.

quality

The quality setting determines how a texture appears when it is on a surface that stretches away into the distance. This

setting can take four values:

• #low

• #lowFiltered

• #medium

• #high

The quality property determines how much processor time is used to deal with foreshortened images

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7baa.html

150ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

If the mesh on which the texture appears is view squarely by the camera, the value of quality has little to no effect.

nearFiltering

The nearFiltering property determines what happens to texels (the pixels in a texture) that appear bigger than a single

pixel on the screen. When nearFiltering is TRUE, oversize texels are antialiased with their neighbors. This makes any

potentially jaggy lines appear smoother.

When a texel is so close to the camera that it is bigger than a pixel nearFiltering can smooth its edges

If the camera can never get close enough to a texture for its individual texels to appear bigger than a screen pixel,

enabling nearFiltering does not have any visible effect.

compressed

To save video RAM, textures that are currently unused can be compressed. If your scene requires textures to swap in

and out of use rapidly, you may want to store them in an uncompressed state, even when they are not currently being

used. This reduces the processing time required to decompress them each time they are swapped back into the scene.

Mapping a texture to a mesh resource

The member3D.newMesh() command allows you to create model resources at runtime. These model resources can

have any shape that you are able to create through code. See “Creating a mesh resource” on page 170 for more details.

Perhaps you want to use a texture to define the details on the surface of a custom-built #mesh resource. If so, you need

to indicate which points within the texture map to which vertex points within the mesh. Different textures can have

different width and height dimensions. However, the shader that applies the texture to the mesh will stretch the texture

to fit, regardless of the texture's proportions.

Imagine two textures, one with dimensions of 256 x 128 and another with dimensions of 32 x 64. Imagine that each is

attached to a shader which is applied to a square mesh. The wide texture will be squeezed horizontally, and the tall

texture will be stretched horizontally. For both textures, the bottom left corner will be at the bottom left of the plane

and the top right corner will be at the top right of the plane. To test this, download and launch the movie

TextureMapping.dir. Click either on the 3D sprite or on one of the texture source sprites to swap the texture in the

shader that is applied to the plane.

http://www.adobe.com/support/director/examples/TextureMapping.dir

151ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Textures are stretched to fit the mesh regardless of their actual width and height

A 2D image uses pixel positions, measured in integers starting at the top left corner of the image. In an image which

is 256 by128 pixels, the bottom left corner is at point(0, 128) and the top right corner at point(256, 0).

A 3D texture measures texel positions in floating point coordinates, starting at the bottom left corner. In a texture with

any dimensions, the bottom left corner is at [0.0, 0.0] and the top right corner at [1.0, 1.0].

Each mesh that a texture is mapped to may have a different number and arrangement of vertices. The plane in the

image above has four vertices, one at each corner, and two triangular faces. In the terrain image below, the mesh has

16 vertices, in four rows and four columns. This gives a total of 18 faces: (4 - 1) x (4 - 1) x 2 triangles per square.

Download and launch the movie MapToTerrain.dir to see how this mesh is created. You will see vertexList and

textureCoordinateList information printed in the Message window.

The same texture mapped to a mesh with 18 faces

To map the same texture to different meshes, define which vertex points in the mesh correspond to which points in

the texture. This information is stored in the mesh object.

http://www.adobe.com/support/director/examples/MapToTerrain.dir

152ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Mapping

The image below shows where the vertex points appear for the terrain mesh, and provides the index number for each

vertex point.

The faces in the mesh model are shown as triangles

[[0.00, 1.00], [0.33, 1.00], [0.67, 1.00], [1.00, 1.00],
[0.00, 0.67], [0.33, 0.67], [0.67, 0.67], [1.00, 0.67],
[0.00, 0.33], [0.33, 0.33], [0.67, 0.33], [1.00, 0.33],
[0.00, 0.00], [0.33, 0.00], [0.67, 0.00], [1.00, 0.00]]

The list above shows how each of the indexed vertex points maps to the floating point coordinates in the texture. To

make it easier to follow what is happening, the MapToTerrain.dir creates the vertex points and the texture coordinates

in an order that appears logical when printed on a page. The actual order of items in these lists is not important, so

long as both lists use the same order.

Note that neither changing the image of the texture, nor changing the texture used by the shader will have any effect

on the mapping. The same relative positions within the texture image will be used, regardless of the absolute

dimensions of the image.

Defining faces in a mesh

Each face in a mesh is defined by a list of three integers, representing the index numbers of the vertex points at each

corner. For example, the face at the top left corner can be defined as [1, 5, 2]. Note that faces are always defined in

counter-clockwise order.The faces themselves can be defined in any order. In the MapToTerrain.dir movie, for

simplicity, they are defined in the same order as the text is read. The top left face thus has a faceID of 1.

Determining which pixel is at a given uv coordinate

When used with the #detailed option, the and member3D.modelsUnderRay() functions allow you to discover the

point where a ray intersects with a given face of a give mesh of a given model. The output from these functions is in

the form of a list of property lists:

http://www.adobe.com/support/director/examples/MapToTerrain.dir
http://www.adobe.com/support/director/examples/MapToTerrain.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html

153ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

[[#model: <model intersected by ray>,
#distance: <float distance to intersection point>,
#isectPosition: <vector worldPosition of intersection point>,
#isectNormal: <vector normal of the face at intersection>,
#meshID: <integer id of mesh to which the face belongs>,
#faceID: <integer id of intersected face>,
#vertices: [<vector>, <vector>, <vector>],
#uvCoord: [#u: <float>, #v: <float>]], ...]

In this list, note the items #meshID, #faceID and #uvCoord. You can use the values in this list to determine which point

in the texture is at the intersection point.

MapToTerrain.dir movie contains a Map Point To Texture script that will perform this calculation for you. You will

find a text member named Expression To Watch. Copy the text that it contains and select the menu item Window >

Object Inspector. Double-click on an empty space in the Name column and paste the text that you have just copied.

Now, run the movie and move your mouse over the terrain texture. In the image below, the mouse is hovering over

the dot on the “i” in the word “This” in the triangle whose faceID is 1.

Using MapPointToTexture() to determine which point in a texture is under the mouse

Face 1 is defined as [1, 5, 2] (see diagram above). You can see from the list of textureCoordinates that these points are

at [0.00, 1.00], [0.00, 0.67] and [0.33, 1.00] within the texture image, respectively.

[[0.00, 1.00], [0.33, 1.00], [0.67, 1.00], [1.00, 1.00],
[0.00, 0.67], [0.33, 0.67], [0.67, 0.67], [1.00, 0.67],
[0.00, 0.33], [0.33, 0.33], [0.67, 0.33], [1.00, 0.33],
[0.00, 0.00], [0.33, 0.00], [0.67, 0.00], [1.00, 0.00]]

154ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The uvCoord list reports that the point under the mouse is 0.27 along the u axis and 0.53 along the v axis for this face.

The u axis for a face starts at the first corner (here, index 1: [0.00, 1.00]) and points towards the second corner (here,

index 5: [0.00, 0.67]). The v axis starts at the first corner and points towards the third corner (here, index 2: [0.33,

1.00]). In this case, the axes are vertical and horizontal, which simplifies the calculation. (The MapPointToTexture()

handler takes care of more complex cases where the two axes are not vertical and horizontal and not at right-angles to

each other).

vFloatDistanceFromBottom = 1.00 + (0.27 * (0.67 - 1.00))
put vFloatDistanceFromBottom
-- 0.91
vFloatDistanceFromLeft = 0.00 + (0.53 * (0.33 - 0.00))
put vFloatDistanceFromLeft
-- 0.17

To convert these values into a position within the texture image, you need to take into account the dimensions of the

texture image, and the fact that the vertical float value is calculated from the bottom:

vImageWidth = 256
vImageHeight = 128
vLocH = integer(vImageWidth * vFloatDistanceFromLeft)
put vLocH
-- 45
vLocV = integer(vImageWidth * (1.0 - vFloatDistanceFromBottom))
put vLocV
-- 11

Drawing on a 3D model

You can use this technique to draw on the surface of a model. To see this in action, download and launch the movie

DrawOn3D.dir.

The DrawOn3D.dir movie uses the Map Point To Texture script to let you draw on a texture image

Rendering

Rendering determines which software and hardware technologies are applied to the 3D data before it is displayed on

the screen.

Not all computers are created equal. What looks good on your development machine may result in poor quality

graphics or slow performance on some end-users' computers.

http://www.adobe.com/support/director/examples/DrawOn3D.dir

155ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Issues can include:

• The choice of rendering technology. See “Using rendering methods” on page 155.

• The amount of video RAM available. This can have an effect on the number, quality and size of the textures that

your application can use. See “Texture properties and method” on page 147.

• The availability on the end-user's machine of hardware accelerated anti-aliasing. See “Antialiasing” on page 157.

Another feature that you can use to quickly render 3D objects with textures on your users’ devices is ‘Render to

texture’. See “Render to texture” on page 157 for details.

• The algorithm used for shading. See “Flat shading and smooth shading” on page 197.

Using rendering methods

Director 3D relies on third-party technologies to render a 3D scene to the user's screen. The video cards on different

end-users' machines may provide a different range of technologies than those you have available on your development

machine.The rendering method refers to the specific way Director displays 3D images on the Stage. The methods

available depend on the type of hardware you have. The rendering methods include the following:

• #auto: Director selects the best method based on the client computer’s specific hardware and drivers.

• #openGL: OpenGL drivers for a 3D hardware accelerator are used. OpenGL is available for the Mac and Windows

platforms.

• #directX9: Specifies the DirectX 9 drivers for hardware acceleration that work only with Windows platforms. #auto

sets the renderer to DirectX 9.

• #directX7_0: DirectX7_0 drivers for a 3D hardware accelerator are used. This option is available for Windows only.

• #directX5_2: DirectX5_2 drivers for a 3D hardware accelerator are used. This option is available for Windows only.

• #software: The Director built-in software renderer is used. This option is available on the Mac and Windows

platforms.

The rendering method can have a dramatic effect both on performance and on the quality of the rendered image.

A comparison of #software (left) and #openGL (right) for rendering a simple scene

156ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Selecting a preferred 3D renderer in Director

If your hardware permits you to select different methods, use the following procedure:

1 Select the Stage.

2 Open the Property inspector.

3 Click the Movie tab.

4 Select a rendering method from the menu.

Property inspector - Preferred 3D Renderer

If you do not select a rendering method, Director defaults to #auto. The name of the active 3D renderer property

appears below the menu. The value of this property indicates which rendering method is currently being used. This is

especially useful when you want to know which renderer is active while you have #auto selected.

Selecting a 3D renderer through code

You can achieve the same effect using Lingo or JavaScript syntax, by setting the value of _movie.preferred3dRenderer

to one of the symbols given above.

Computer A

put getRendererServices().rendererDeviceList
-- [#openGL]

Computer B

put getRendererServices().rendererDeviceList
-- [#directX5_2, #directX7_0, #directx9, #software]

To select a particular renderer, you can set getRendererServices().renderer to the symbol representing the renderer you

want to use. For example:

getRendererServices().renderer = #directx9

You can use the read-only property _movie.active3dRenderer to determine whether the selected renderer has been

successfully set.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f02.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aa5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f22.html

157ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Texture renderFormat

Textures give precision and detail to the rendering of an image. However, they require significantly more space in the

computer's video Random Access Memory than 2D images.

A 2D image normally appears flat on the screen with one pixel of memory space corresponding to one pixel of screen

space. A 3D texture may be placed on a surface at any angle to the camera. A texture for a wall, for example may need

to be very detailed when it is viewed from directly in front and close up. If the wall is in the distance, or seen at a steeply

foreshortened angle, very few pixels on the screen actually uses the pixels stored in the texture. Only a small proportion

of the information stored in textures loaded into video RAM is used on any one frame. The graphics card used to

render an image to your client's monitor will have a finite capacity for textures. You may want to exploit the available

space to the best effect.

textureRenderFormat

You can set the texture.renderFormat property individually for each texture. Alternatively, you can set a default value

for all textures, using getRendererServices().textureRenderFormat.

For the best graphic quality, you can choose one of the 32-bit formats (#rgba8880 or #rgba8880). For more economic

use of the video RAM, you can use one of the 16-bit formats (#rgba5550, #rgba5650, #rgba5551 or #rgba4444). Any

texture whose renderFormat is set to #default will use the value set by getRendererServices().textureRenderFormat.

You can alter this value at runtime. See “Texture properties and method” on page 147for a discussion of the

scaleDown() method and for alternative techniques for finding the right balance between texture detail and size.

Antialiasing

See “Antialiasing” on page 390.

Render to texture

Let us consider that you are developing a car-racing game in Director. You need the driver of the car to see the other

cars and the 'scene' behind the car in the side rear-view mirrors.

The easiest way to achieve this is to use the render to texture feature. This feature helps you render objects with specific

'textures'during run-time and display the rendered scene on your users' devices faster.You can define the 'texture' using

a camera view. Everything that is within the camera view is considered as a 'texture', and the whole 'view' is applied to

the chosen object. In the car-racing example, you can place the camera behind the car. As the car moves, the camera

captures the view behind the car, and this view is applied as a 'texture' to the rear-view mirrors.

When you use camera views for render to texture, the image is copied onto the video RAM and then in the Lingo code,

and is then applied to the chosen object at run-time.

You can render the objects quickly by applying the image to the object directly from the video RAM. To do so, you

need to set the updateRTImageOnRender property to false.

The following are the typical steps that you need to follow for using render to texture:

1 Create a new texture with type rendertexture:

member(whichCastmember).newTexture(newTextureName {,#typeIndicator, rendTexWidth,
rendTexHeight})

The updateRTImageOnRender property is set to 'True' by default. This means, Director copies the texture image

from the video RAM to the Lingo code and then applies to the target object.

If you want to apply the texture directly from video RAM to the target object, set the updateRTImageOnRender

property to 'False'.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-72a1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aa5.html

158ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

<castmember>.updateRTImageOnRender=0

2 Using the renderToTexture method, assign a camera to the new texture that you created.

<3dSpriteRef>.renderToTexture(cameraObj, renderTextureObj)

If updateRTImageOnRender is 'True', you can use the renderTextureObj.image property to obtain a Lingo

image of the texture on video RAM. You can then apply more effects, for example, filters, on this image, before

applying to the target object.

3 Apply the texture to the target object.

vMember.model(3).shader.texture = vMember.texture("renderTextureObj")

Here is an example that starts with creating a new Render Texture object and then renders a 3D scene into it using the

current camera of the sprite. Then, the rendered image is populated into a bitmap cast member named bitmapRT.

-- Lingo
sprite3D = sprite("3D World")
myRT = member("3D World").newTexture("MyRT1",#renderTexture, 512, 512)
sprite3D.renderToTexture(sprite3D.camera, myRT)
member("bitmapRT").image = myRT.image

To see a demonstration of this feature, download and launch the movie RenderTexture.dir.

Render to texture used in a 3D sprite of the RenderTexture.dir movie

When you launch the movie, you see that the wall behind the russian doll in the 3D sprite is rendered with a 2D static

image.

Click the Render To Texture button to see the texture rendered on the wall.

http://www.adobe.com/support/director/examples/RenderTexture.dir

159ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The 3D sprite has two cameras:

• The default one that is facing the russian doll and through which you look at the sprite.

• The second camera that is behind the doll and is facing the doll.

The second camera view (the back of the doll) is the texture that you see on the wall behind when you click the Render

To Texture button.

You also notice that the 2D image adjacent to the 3D sprite too changes when you click the Render To Texture button.

This is because the updateRTImageOnRender is set to ‘True’, and the texture is obtained as a 2D image before applying

to the wall.

Now, click the updateRTImageOnRender button to set the property to ‘False’. You now see that the 2D image is not

updated, and the texture is directly applied to the wall.

Geometry

The word geometry is often used to describe everything that gives the illusion of three dimensions in a 3D world. It

can refer to anything from the invisible numbers used to define the structure of a model resource through the visible

position and location of a model to the relationship between the positions of individual nodes. This section looks at

how the 3D elements of a virtual world are defined. It covers:

• What a 3D model is. See “Models” on page 159.

• Different ways of moving models and of controlling the interactions between them. See “Manipulating models” on

page 163.

Also see “Motion” on page 260, “Collisions” on page 323and “Physics” on page 293.

• How a model resource defines the shape of a model. See “Model resources” on page 163.

• How to generate custom model resources at runtime. These can have a variety of different shapes. For example:

• Geometrical figures, see “Primitives” on page 165.

• Extruded shapes, see “Creating an extruder resource” on page 166.

• Arbitrary shapes, see “Creating a mesh resource” on page 170.

• Distorted 2D planes “Creating a terrain mesh” on page 176. Customized mesh resources may also display

multiple textures. See “Mesh resources with multiple shaders” on page 182.

• How to change the shape of a model resource at runtime. See “Manipulating a mesh resource” on page 182and

“MeshDeform modifier” on page 186.

• How to give the illusion that a mesh of flat triangular faces is a smoothly curved surface. See “Flat shading and

smooth shading” on page 197.

Models

The following types of visual content can be displayed inside a 3D sprite:

• The default background color that appears where there is no other visual content

• Backdrops, 2D areas that appear behind any 3D content

• 3D models

• Overlays, 2D areas that appear in front of any 3D content.

160ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• Debugging axes and bounding spheres

In other words, the only way to display 3D shapes is with models. See Model Properties and Model Methods for details.

Accessing the models in a 3D member

To determine how many models a 3D member currently contains, you can use the count property (Lingo) or method

(JavaScript).

-- Lingo
put member("3D").model.count
-- 1
// JavaScript
trace(member("3D").count("model"));
// 1

To access a particular model, you can use its name (Lingo only) or its index number.

-- Lingo
put member("3D").model[1]
-- model("Model")
put member("3D").model(1)
-- model("Model")
put member("3D").model("model")
-- model("Model")
// JavaScript
trace(member("3D").getPropRef("model", 1));
// <model("Model")>

If a model with the given name or index number does not exist, Director will return VOID (Lingo) or undefined

(JavaScript). No error occurs.

Creating and deleting models

Use the member3D.newModel() function to create a new model with a given unique name.

Note: Unique name means that no other node (model, light, group or camera) with the given name already exists. If you

try to create a new model with the same name as an existing node, a script error occurs: “Object with duplicate name

already exists”.

You can optionally provide a pointer to a modelResource object in the call.

See “3D namespace” on page 85 for more details and a script that ensures that you have a unique name for the model

that you are about to create.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7fee.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7fed.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bd0.html

161ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo
vModel = member("3D").newModel("ResourceFree")
put vModel, vModel.resource, vModel.shaderList
-- model("ResourceFree") <Void> []
vResource = member("3D").modelResource("Sphere")
vModel = member("3D").newModel("ResourceFull", vResource)
put vModel, vModel.resource, vModel.shaderList
-- model("ResourceFull")
// JavaScript
vModel = member("3D").newModel("ResourceFree");
<model("ResourceFree")>
trace(vModel, vModel.resource, vModel.shaderList);
// <model("ResourceFree")> undefined <[]>
vResource = member("3D").getPropRef("modelResource", 5);
<sphere("Sphere")>
vModel = member("3D").newModel("ResourceFull", vResource);
<model("ResourceFull")>
trace(vModel, vModel.resource, vModel.shaderList);
// <model("ResourceFull")> <sphere("Sphere")> <[shader("DefaultShader")]>

Note: If you create a model without defining a modelResource for it, you cannot attach any modifiers to the model. If you

set the resource property of a model to VOID, all the modifiers and shaders that were initially attached to the model are

deleted.

To delete a model, use the member3D.deleteModel() function. You can identify the model either by its name or its

index number. When you delete a model, the index number of other models may change. If you attempt to delete a

non-existent model, no error occurs.

-- Lingo syntax
put member("3D").deleteModel("ResourceFree")
-- 1
put member("3D").deleteModel("ResourceFree")
-- 0
put member("3D").deleteModel(2)
-- 1
// JavaScript syntax
trace(member("3D").deleteModel("ResourceFull"));
// 1
member("3D").deleteModel("ResourceFull");
0
member("3D").deleteModel(2);
1

Geometry

The shape of a 3D model is defined by a model resource. See Model resources. Several models may share the same

model resource. You can set the resource property of a model to change the model resource that is displayed by the

model. You can set the resource property of a model to VOID. This will make the model invisible (since it now has no

geometry), but all the children of the model remain unchanged.

shaderList

A model's resource can have more than one mesh. The model's model.shaderList property is a list that contains one

shader for each mesh in the model's resource. If you set the model's resource for a modelResource with more meshes,

the newly created entries in the model's shaderList are filled with the default shader. The same happens if you set the

shaderList of a model to a list which does not contain enough shaders for all the meshes in the model.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be1.html
dir_controlling_appearance_ac.xml#WS287f927bd30d4b1f3e34173b12ff91088c9-7f5f
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a43.html

162ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo syntax
v3DMember = member("3D")
vModel = v3DMember.model(1)
put vModel.resource.type
-- #cylinder
put vModel.shaderList
-- [shader("DefaultShader"), shader("DefaultShader"), shader("DefaultShader")]
vShader = v3DMember.shader(2)
vModel.shaderList = [vShader, vShader]
put vModel.shaderList
-- [shader("Red"), shader("Red"), shader("DefaultShader")]
// JavaScript
v3DMember = member("3D");
vModel = v3DMember.getPropRef("model", 1);
trace(vModel.resource.type);
// #cylinder
trace(vModel.shaderList)
// <[shader("DefaultShader"), shader("DefaultShader"), shader("DefaultShader")]>
vShader = v3DMember.getPropRef("shader", 2);
vModel.shaderList = list(vShader, vShader);
trace(vModel.shaderList);
// <[shader("Red"), shader("Red"), shader("DefaultShader")]>

If you set the shaderList property after changing the resource, then the model keeps a separate record of which

shaderList is used by which resource.

Placement in 3D world space

The position, rotation and scale of a model in the world is defined by the model's transform property, in conjunction

with the transform of each node in the model's parent chain. To determine exactly how the model appears in the world,

you can use the node.getWorldTransform() method. You can use node.worldPosition to return the vector position of

the model's origin point in world space. You can use node.removeFromWorld() to set the model's parent to VOID. Its

transform will remain unchanged. If you restore the model to its original parent, it will reappear in the same place in

the world. If you use node.addToWorld(), the parent of the model will be set to the group(“World”). If this was not

the model's original parent, then it may find itself in a new location. See “Nodes” on page 88 for more details.

Appearance

For a complete discussion on how to control the surface characteristics of a model, see “Shaders and appearance

modifiers” on page 130 and “Textures” on page 141.

Properties and methods shared with other nodes

Models are one of the four types of node objects. For details on how to link nodes together into parent-child

hierarchies, and on the properties and methods shared by all nodes, see “Nodes” on page 88.

Features unique to models

Apart from being physically visible in a 3D sprite, models differ in a number of other ways from groups, lights, and

cameras.

• Modifiers: You can attach appearance modifiers, behavior modifiers, and animation modifiers only to models. See

“Modifiers” on page 50.

• Animation: You can animate models using keyFrame animations or bones animations. A key Frame animation can

alter the position, rotation, and scale of a model over time. A bones animation can manipulate virtual bones inside

the model to alter the model's shape over time. See “Pre-defined animations” on page 270 for more details.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bed.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bfb.html

163ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• Visibility: You can make a model visible only from the outside, only from the inside, visible from any position, or

completely invisible. An invisible model remains in the 3D world, and can participate in collision detection and

other physical interactions. See model.visibility.

• Cloning from a different cast member: You can clone a model (and optionally all the objects in its child hierarchy

and those used to define its appearance), from a different cast member. See

member3D.cloneModelFromCastMember().

Sources

3D models can be created in a third-party 3D design application. See “Sources of 3D content” on page 63. You can also

use Director's built-in primitives to create model resources for models on the fly. For geometric shapes, see

“Primitives” on page 165. For extruded shapes, see “Creating an extruder resource” on page 166. To create meshes with

arbitrary shapes, see “Creating a mesh resource” on page 170. To create distorted 2D planes for use as terrains, see

“Creating a terrain mesh” on page 176.

Manipulating models

Models can behave in different ways.

• Models can remain at a static location (like a building), or they can move around (like a ball). See “Translation” on

page 206.

• Models can have fixed geometry or they can be animated or deformed (like a running avatar, a windmill, a crashing

car or a shower of particles). See “Pre-defined animations” on page 270, “Manipulating a mesh resource” on

page 182and “Particles” on page 197.

• Models can mutate from one object to another. See “Model resources” on page 163.

• Models can allow other models to pass through them or be made to react to collisions with other models. See

“Collisions” on page 323.

• They can behave as if they had physical properties, such as mass and friction. See “Physics” on page 293.

Model resources

Director recognizes eight types of model resources:

• #fromFile: Any model created in a third-party 3D design application, converted to W3D format and imported into

Director, has a model resource of the type #fromFile. The other seven types are Primitive resources that can be

generated on the fly at runtime in Director.

• #sphere

• #plane

• #cylinder

• #box

• #extruder

• #mesh

• #particle

See “Primitives” on page 165 for more information on the first four, geometrical types. See “Creating an extruder

resource” on page 166 for information on the #extruder type. “Creating a mesh resource” on page 170 for information

on the #mesh type. See “Particles” on page 197 for information on the #particle type. See Model Resources for a full

list of the methods and properties of the different model resource types.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6802.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b96.html

164ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

To determine how many modelResources a 3D member currently contains, you can use the count property (Lingo) or

method (JavaScript).

-- Lingo
put member("3D").modelResource.count
-- 1
// JavaScript
trace(member("3D").count("modelResource"));
// 1

To access a particular modelResource, you can use its name (Lingo only) or its index number.

-- Lingo
put member("3D").modelResource[1]
-- plane("DefaultModel")
put member("3D").modelResource(1)
-- plane("DefaultModel")
put member("3D").modelResource("model")
-- plane("DefaultModel")
// JavaScript
trace(member("3D").getPropRef("modelResource", 1));
// <plane("DefaultModel")>

If a modelResource with the given name or index number does not exist, Director returns VOID (Lingo) or undefined

(JavaScript). A script error does not occur.

Accessing the resource of a model

You can get and set the resource property of a given model to any available modelResource:

-- Lingo syntax
vResource = member("3D").model(1).resource
put vResource
-- sphere("Sphere")
member("3D").model(1).resource = member("3D").modelResource(3)
put member("3D").model(1).resource
-- mesh("Mesh")
// JavaScript syntax
var vResource = member("3D").getPropRef("model", 1).resource;
<sphere("Sphere")>
vResource = member("3D").getPropRef("modelResource", 3);
<mesh("Mesh")>
member("3D").getPropRef("model", 1).resource = vResource;
<mesh("Mesh")>

Creating modelResources

The command to use to create a new modelResource depends on the type of resource:

• For the #sphere, #plane, #cylinder and #box types, use the member3D.newModelResource() function. See

“Primitives” on page 165 for more details.

• For the #extruder type, use the function textMember.extrude3d(a3DMember). See “Creating an extruder resource”

on page 166 for more details.

• For the #mesh type, you need to use member3D.newMesh(). See “Creating a mesh resource” on page 170for more

details.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bcf.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bdc.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bd1.html

165ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

You cannot create a new modelResource of the type #fromFile from within Director. However, you can duplicate the

modelResource of an existing model, using the node.cloneDeep() function. If you require, you can then modify the

structure of the cloned modelResource by adding the #meshDeform modifier to the cloned model. For more details,

see “Manipulating a mesh resource” on page 182.

While creating a new modelResource, provide a unique name for the modelResource. A unique name means that no

other modelResource with the given name already exists.

Note: If you try to create a new modelResource with the same name as an existing modelResource, a script error occurs:

“Object with duplicate name already exists”.

See “3D namespace” on page 85 for more details. A model can, however, have the same name as a modelResource.

Deleting model resources

To delete a model, use the member3D.deleteModel() function. You can identify the model either by its name or its

index number. When you delete a model, the index number of other models may change. If you attempt to delete a

non-existent model, no error occurs.

-- Lingo
put member("3D").deleteModelResource("NoLongerRequired")
-- 1
put member("3D").deleteModelResource("NoLongerRequired")
-- 0
put member("3D").deleteModelResource(2)
-- 1
// JavaScript
trace(member("3D").deleteModelResource("NoLongerRequired"));
// 1
member("3D").deleteModelResource("NoLongerRequired");
0
member("3D").deleteModelResource(2);
1

Primitives

Director provides seven types of Primitive resources that can be generated on the fly at runtime in Director.

• #sphere: Sphere properties

• #plane: Plane properties

• #cylinder: Cylinder properties

• #box: Box properties

• #extruder: “Creating an extruder resource” on page 166

• #mesh: “Creating a mesh resource” on page 170

• #particle: “Particles” on page 197

Extruder, mesh, and particle resources are more complex than #sphere, #plane, #cylinder, and #box resources. This

section explains the first four geometrical types.

Creating a regular primitive resource

To create a new modelResource of the type #sphere, #plane, #cylinder or #box, use the

member3D.newModelResource() function.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7be1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7ffc.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7ff6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7ff8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7ff7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bcf.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bcf.html

166ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Note: Ensure that the name you provide for the new resource and the modelResource type is unique.

The following code creates a new modelResource of the type #sphere in the member “3D”, and then creates a model

from the resource:

-- Lingo syntax
v3DMember = member("3D")
vName = "Sphere"
vResource = v3DMember.newModelResource(vName, #sphere)
vModel = v3DMember.newModel(vName, vResource)
// JavaScript syntax
<(member 2 of castLib 1)>
vName = "Sphere";
vResource = v3DMember.newModelResource(vName, symbol("sphere"));
vModel = v3DMember.newModel(vName, vResource);

Geometry of a regular primitive resource

The origin point of a regular primitive resource is at its center. The default dimensions of the #sphere, #box, and

#cylinder primitives give them a width, height, and length of 50 world units.

The default size of the #plane primitive gives it a width and a length of 1 unit. The #plane resource's length property

actually determines its height. The #plane primitive is rotated so that it is visible from the default camera position. To

create a horizontal plane, rotate the model -90° around the world's x-axis.

Modifying the mesh of a primitive resource

You can obtain a wide variety of shapes by modifying the various properties of the regular primitives. For example,

you can create hemispheres, cones, tubes, rectangular fences, and other shapes. You cannot set the position of a

particular vertex point in a primitive modelResource directly, but you can apply the #meshDeform modifier to a model

created from a primitive modelResource, and use the meshDeform modifier to move vertex points around. See

“MeshDeform modifier” on page 186 for details.

Creating an extruder resource

The extrude3d() function is designed to create an #extruder resource from a text cast member. However, you can

change the vertexList property of an #extruder resource after it has been created.

Extruding text

To see an example of using an extruder to create three-dimensional text in a 3D cast member, download and launch

the movie 3dExtruder.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bdc.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7cc6.html
http://www.adobe.com/support/director/examples/3dExtruder.dir

167ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

An #extruder resource creates 3D text using the contents of a text member

To creating a 3D model from extruded text, you require two lines of code:

vExtruder = member("Text to Extrude").extrude3D(member("3D"))
vModel = member("3D").newModel("Extrusion", vExtruder)

How it works

The information on the shape of each character in a font is stored as a vertexList, similar to the vertexList of a

VectorShape member. A vertexList defines a curved line. It consists of a series of points that appear in known positions

on the line and information about how the line curves between adjacent points.

A 3D modelResource can only store points. When a vertexList is converted from 2D to 3D, the information about the

curvature of the surface between fixed points is lost. The points in the vertexList of a 3D modelResource are joined

together by straight lines. To generate what looks like a smooth curve, the extrude3D() command generates a series of

intermediate points along the curved line, and joins them up with straight lines.

The illustration below helps you visualize the process. The Smooth shape on the left uses curved lines. The Flat shape

on the right creates an approximation to the Smooth shape using many more points joined together by straight lines.

(You can find a Lingo handler that performs this conversion in the Create Straight Line Approximation script in the

3dExtruder movie).

The extrude3d() method then creates another group of points parallel to the first, and joins the points up to create a

tunnel the shape of each letter.

168ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

A visualization of how the extrude3D() command approximates a curved line from a series of straight lines

Geometry

The origin point of the extruder resource is at the bottom left corner of the front face. The width and height of the

resource, in world units, is approximately equal to the width and height of the image of the text, in pixels, after

trimming away all the white space around the edges.

For example, if the text fits into a bounding box with a width of 100 pixels and a height of 64 pixels, the extruder

resource fits into a bounding box that is approximately 100 units wide 64 units high. The length of the extruder

resource depends on its tunnelDepth property (see below).

Here is a Lingo command that you can execute to check this. Launch the 3dExtruder.dir movie and then execute this

command in the Message window:

-- Lingo syntax
do "vImage = member(3).image.trimWhiteSpace()"&RETURN&"put #trimmedImage, vImage.width,
vImage.height"&RETURN&"vBox = GetBoundingBox(member(1).model(1))"&RETURN&"put #boundingBox,
integer(vBox.maxX - vBox.minX), integer(vBox.maxY - vBox.minY)"
-- #trimmedImage 155 75
-- #boundingBox 157 75

The 3dExtruded.dir movie uses the Get Bounding Box script to determine the smallest possible box that fits around

the extruder model. It then creates a group to act as the parent of the extruder model, and places this parent group at

the center of the bounding box. If you rotate the parent group, the extruder model rotates around its center.

Extruder properties

Extruder resources have five properties that you can get and set:

• extruderResource.smoothness: An integer value between 1 and 10. This determines how many points are used to

approximate the curved lines between the fixed points. A value of 1 means that only the fixed point is used. The

default value is 5, meaning that 4 additional points are added along the curve.

• “Particles” on page 197tunnelDepth: A floating point value between 1.0 and 100.0. The default value is 50.0. This

determines the distance in world units between the front and back faces of the extruded model.

http://www.adobe.com/support/director/examples/3dExtruder.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bb6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bb0.html

169ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• extruderResource.bevelType: #none, #miter, or #round. The default value is #none. If #none is used then

bevelDepth (see below) is ignored. This determines the shape of the bevel that may be added between the vertical

faces and the horizontal tunnel.

• extruderResource.bevelDepth: A floating point value between 0.0 and 10.0. The default value is 1.0. This property

does not have any effect if bevelType (see above) is #none. This determines how many world units the extruder

resource is inflated to the top, bottom, and to the sides. If the bevelDepth is greater than half the tunnelDepth, the

resulting mesh may look strange.

Multiple meshes

The extruder3d() command creates a separate mesh for each letter. This means that you can apply a different shader

to each letter if you wish. See the shaderList section of “Models” on page 159 for more details.

Fonts and font properties

In Director 11.5, the extruder3d() command may yield unexpected results if some characters are in a different font,

font size, or font style from others. The following screenshot illustrates some of the issues:

Changing font or font properties in the source text can lead to unexpected results

In the Text to Extrude text member, the alignment is set to #center. In addition, the middle two letters of each word

are given different properties from the rest of the word. As you can see:

• textChunk.alignment is ignored.

• Bold and underlined text is treated as plain text.

• Changing the font leads to the wrong letters being displayed, and no change in font.

• If the fontSize of a given character is set that fontSize is applied to the next character.

• If a given character is set to appear in an italic typeface, the italic typeface is applied to the next character.

Note: For best results, use the same font and font properties for the entire text of the source text member, or use a custom

vertexList as explained below.

Using a custom vertexList

After the extruder resource has been created, you can change the vertexList of the extruder on the fly. The shape of all

models that use the extruder resource are updated to reflect the new geometry.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bc5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bc6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7dbc.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7db4.html

170ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo and JavaScript syntax
vExtruder = member("Text to Extrude").extrude3D(member("3D"))
vModel = member("3D").newModel("Extrusion", vExtruder)
vExtruder.vertexList = member("VectorShape").vertexList

In Director 11.5, extruderResource.vertexList is a write-only property. You cannot retrieve the vertexList from an

extruder resource after it is set, as the following examples show:

-- Lingo syntax
put member("3D").model("Extruded").resource.vertexList
-- <Null>
// JavaScript syntax
trace(member("3D").getPropRef("model", 1).resource.vertexList);
// null

To see an example of this in action, download and launch the movie Extruder.dir.

Note: The 2D co-ordinates of a vectorShape member are measured only rightwards and downwards, whereas the 3D co-

ordinates of a model resource are measured rightwards, upwards, and forwards. As a result, the shape of an #extruder

resource appears to be flipped vertically.

Texture mapping

An #extruder resource has only one mesh. The same shader is applied to both front and back, as a mirror image, and

it is smeared along the sides. If you want to create an modelResource that appears to be extruded, and which has

separate shaders on the front, back and tunnel, use a #mesh resource. See “Creating a mesh resource” on page 170 for

details.

Creating a mesh resource

The mesh generator is the most complex model resource. It allows you to create models with unique geometries at

runtime. Some examples of typical uses are:

• Mathematically simple volumes

• Lathed shapes

• Walls for a building

• Low-polygon models used for collision detection

• Terrain meshes

Writing a script to create a custom mesh requires a good visualization of 3D space, a good grasp of a number of low-

level 3D concepts, concentration, and plenty of patience. However, you can find scripts that generate a mesh for you,

from information that you provide in some of the demo movies that accompany this manual.

Do-it-yourself mesh movies

• See “Mesh resources” on page 72 for a movie that allows you to create a 2D shape by setting points in a vectorShape

member, and then transforms this into a 3D model by rotating the 2D shape around a vertical axis. The movie can

generate scripts which recreate the models in your own movies.

• See “Not walking through objects” on page 222 for a script that generates a low-polygon ribbon mesh for use with

collision detection. The script uses the vertexPoints of a VectorShape member to generate the shape of the ribbon.

• See “Following a pre-defined path” on page 220 for scripts that generate a tube from a curve defined by a

vectorShape member.

http://www.adobe.com/support/director/examples/Extruder.dir

171ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• See “Hugging Terrain” on page 238 for a simple script that generates a rectangular terrain from data in a height-

map Bitmap member. White pixels are high points, black pixels are low points, and gray pixels create a gradient in

between. The Bitmap member's regPoint is used as the origin for the terrain mesh.

• See “Terrains” on page 319 for a more comprehensive script that generates a terrain from a height-map. This script

also automatically creates a terrain object which uses the Dynamiks Physics Xtra extension to ensure that rigidBody

objects do not pass through the terrain mesh. The mesh generator primitive’s type property is #mesh and is created

by the member’s newMesh() method. The parameters included with that method describe how large the mesh will be.

You can use the mesh deform modifier to manipulate vertex positions at runtime for #mesh or any other type of model

resource. You can also use the #mesh primitive to change mesh properties directly.

Ingredients

All types of model resource (except for the Particle resource) store five types of information:

• A list of vertex points

• A list of normal directions

• A list of colors

• A list of texture coordinates

• Information on each of the faces. This information includes:

• Which vertex point is at each corner of the triangular face

• The color of each vertex

• The normal at each vertex

• The shader for the face (this determines which mesh it belongs to)

• The texture coordinates for the face

• The faces that share a neighboring edge

To create a model resource of the type #mesh, provide all this information, or rely on appropriate default values.

Imagine that you want to create a trick playing card which can be used to display either a Jack of Spades or a Queen of

Hearts. To help you visualize this, download and launch the movie TrickCard.dir.

You can simulate a trick playing card with 8 vertices and 12 triangular faces

http://www.adobe.com/support/director/examples/TrickCard.dir

172ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Launch the TrickCard.dir movie, then use the left and right arrow keys to rotate the camera around the card, so that

you can familiarize yourself with the shape of the card model. The diagram below shows the index numbers of the

vertex points used to create the card in black and the index numbers of the texture coordinate points in white. It shows

the index number of the faces in green, inside a circle. It shows three different views of the card in the top row, and the

layout of the bitmap image for the texture in the bottom row.

The index positions of vectors in the vertexList (black) and points in the textureCoordinateList (white)

173ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The 512x256 bitmap image used for the texture that is applied to the model

Defining a vertexList

In the Trick Card behavior in the movie, the mCreateMesh() handler starts by defining eight points for the vertexList.

Compare the positions in this list with the index numbers shown in black in the illustration above.

vVertexList = []
vVertexList.append(vector(0, 0, 0)) -- 1 center base
vVertexList.append(vector(0, 256, 0)) -- 2 center top
vVertexList.append(vector(-96, 0, 0)) -- 3 left base
vVertexList.append(vector(-96, 256, 0)) -- 4 left top
vVertexList.append(vector(0, 0, 96)) -- 5 front base
vVertexList.append(vector(0, 256, 96)) -- 6 front top
vVertexList.append(vector(96, 0, 0)) -- 7 right base
vVertexList.append(vector(96, 256, 0)) -- 8 right top

Defining the faces

The next step is to define the faces. Each face is defined by a list of three integers; each integer represents the index

position of a vertex in the vertexList that was defined above. For example, face 1 is defined as [3, 2, 4]. This means:

• vVertexList[3] or vector(-96, 0, 0) at the bottom left

• vVertexList[2] or vector(0, 256, 0) at the top center

• vVertexList[4] or (vector(-96, 256, 0) at the top left

There are a total of 12 faces. Here is the complete definition of the list:

vFaceList = []
vFaceList.append([3, 2, 4]) -- 1 left rectangle (front)
vFaceList.append([3, 1, 2]) -- 2 *
vFaceList.append([1, 5, 2]) -- 3 * flap (left)
vFaceList.append([5, 6, 2]) -- 4
vFaceList.append([5, 2, 6]) -- 5 flap (right)
vFaceList.append([5, 1, 2]) -- 6 *
vFaceList.append([1, 7, 2]) -- 7 * right rectangle (front)
vFaceList.append([7, 8, 2]) -- 8
vFaceList.append([7, 2 ,8]) -- 9 right rectangle (back)
vFaceList.append([7, 1, 2]) -- 10 *
vFaceList.append([1, 3, 2]) -- 11 * left rectangle (front)
vFaceList.append([3, 4, 2]) -- 12

Compare the items in vFaceList with the illustration above.

174ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

textureCoordinateList

Thirdly, the mCreateMesh() handler defines a series of textureCoordinates. These are measured as a proportion of the

width and the height of the texture image. The point [0.0, 0.0] is in the bottom left corner of the texture image, and the

point [1.0, 1.0] is at the top right corner. Compare these coordinates with the index numbers in white in the illustration

above.

vTextureCoordinateList = []
-- Bottom of card
vTextureCoordinateList.append([0.0, 0.0]) -- 1 vTextureCoordinateList.append([0.1667,
0.0]) -- 2 Jack
vTextureCoordinateList.append([0.3333, 0.0]) -- 3
vTextureCoordinateList.append([0.5, 0.0]) -- 4 Queen
vTextureCoordinateList.append([0.6667, 0.0]) -- 5
vTextureCoordinateList.append([0.8333, 0.0]) -- 6 Back
vTextureCoordinateList.append([1.0, 0.0]) -- 7
-- Top of card
vTextureCoordinateList.append([0.0, 1.0]) -- 8
vTextureCoordinateList.append([0.1667, 1.0]) -- 9 Jack
vTextureCoordinateList.append([0.3333, 1.0]) -- 10
vTextureCoordinateList.append([0.5, 1.0]) -- 11 Queen
vTextureCoordinateList.append([0.6667, 1.0]) -- 12| vTextureCoordinateList.append([0.8333,
1.0]) -- 13 Back
vTextureCoordinateList.append([1.0, 1.0]) -- 14

Mapping vertices to texture coordinates

Fourthly, the mCreateMesh() handler creates a list to map the vertex points to the textureCoordinate points. Note that

the vTextureFaceMap below has 12 entries, and that each entry corresponds to one of the faces in vFaceList above.

For example, face 1 will display the left-most triangle in the texture image, as defined by the texture co-ordinates at

positions [1, 9, 8].

vTextureFaceMap = []
-- Jack
vTextureFaceMap.append([1, 9, 8])
vTextureFaceMap.append([1, 2, 9])
vTextureFaceMap.append([2, 3, 9])
vTextureFaceMap.append([3, 10, 9])
-- Queen
vTextureFaceMap.append([3, 11, 10])
vTextureFaceMap.append([3, 4, 11])
vTextureFaceMap.append([4, 5, 11])
vTextureFaceMap.append([5, 12, 11])
-- Back
vTextureFaceMap.append([5, 13, 12])
vTextureFaceMap.append([5, 6, 13])
vTextureFaceMap.append([6, 7, 13])
vTextureFaceMap.append([7, 14, 13])

175ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Defining normals

A normal is a direction vector. Each vertex of each face will have a normal vector associated with it. When the Director

Player is calculating how much light or shade to show for each face, it uses the information stored in the normals to

determine which direction each vertex is facing in. In the same way that you define a textureCoordinateList and the

mapping for each face, you can also define a list of normals and a list to map these normals to each vertex of each face.

However, most cases, you can rely on Director to do it for you. Near the end of the mCreateMesh() handler, the

meshResource.generateNormals() method will be used. For this reason, you must not define normals. You have to be

explicit about this:

vNormalCount = 0

Defining a colorList

The Trick Card script applies a texture to the model. In other circumstances, you may want to give each vertex of each

face a specific color. In this case, the best color to use for all vertices of all faces is white.

Note: The default blendFunction of a standard shader is #blend. If you set the color of the faces of your mesh to something

other than white, any texture you apply is blended with the mesh color. You can cancel out this blending by setting the

blendFunction of the shader to #replace. See “Standard shaders” on page 131 for more details.

vColorList = [rgb(255, 255, 255)]

Creating the mesh

The mCreateMesh() handler now has all the information it needs to create a usable mesh modelResource. This needs

to be done in five steps:

1 Use member3D.newMesh() to create a mesh resource.

2 Set the vertexList, colorList, and textureCoordinateList properties of the mesh resource. In your own projects, you

may also want to set the normalList at this stage.

3 For each face in the mesh, set the vertices, colors, and textureCoordinates. In your own projects, you may also want

to set the shader and normals properties for each face.

4 Use meshResource.generateNormals() to generate normals for each face automatically.

5 Use meshResource.build()to compile all the information that you have provided into a modelResource.

Note: You can create a multi-mesh #mesh resource by defining which shader each face must use.

Here is the code for each of the five steps.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bd1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bd1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bd1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a12.html

176ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

 -- 1. Create a new mesh
vMesh = member("3D").newMesh(\
"Trick Card Mesh", \
vFaceList.count, \
vVertexList.count, \
vNormalCount, \
vColorList.count, \
vTextureCoordinateList.count \
)
-- 2. Apply the vertex, color, face and texture data
vMesh.vertexList = vVertexList
vMesh.colorList = vColorList
vMesh.textureCoordinateList = vTextureCoordinateList
-- 3. Define each of the faces
vCount = vFaceList.count
repeat with ii = 1 to vCount
vMesh.face[ii].vertices = vFaceList[ii]
vMesh.face[ii].colors = [1, 1, 1]
vMesh.face[ii].textureCoordinates = vTextureFaceMap[ii]
end repeat
-- 4. Create a flat mesh
vMesh.generateNormals(#flat)
-- 5. Complete the process
vMesh.build()

Creating a model from a mesh resource

You can now treat your mesh resource like any other modelResource. The following code:

• Creates a model from the mesh resource

• Creates a texture from a bitmap member named “Trick Card”

• Creates a shader to use the texture

• Applies the shader to the model

vMember = member("3D")
vName = "Trick Card"
vModel = vMember.newModel(vName, vMesh)
vTexture = vMember.newTexture(vName)
vTexture.member = member(vName)
vShader = vMember.newShader(vName, #standard)
vShader.texture = vTexture
vModel.shader = vShader

Manipulating the vertexList and normalList

You have direct access at all times to the various lists stored by a #mesh resource. See “Manipulating a mesh resource”

on page 182 to see how to fold this Trick Card model so that it appears to be either a Jack of Spades or a Queen of

Hearts.

Creating a terrain mesh

A terrain mesh resembles a 2D plane that has been deformed to create an interesting landscape. Normally, the end user

only sees the top surface of a terrain mesh, and no objects falls through it. This means that you have to use some

method of collision detection on the terrain.

177ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

You can use the following techniques for collision detection:

• Ray casting. See “Ray casting” on page 321.

• Using the Collision Modifier. See “Collision modifier” on page 280.

• Using the Dynamiks Physics engine. See “Terrains” on page 319.

Note: You can use physics.createTerrain() to create an invisible Terrain object that interacts with rigidBodies. The

createTerrain() method indirectly relies on a Matrix object. This imposes a particular structure on the terrain mesh. In

particular, the origin point of the mesh resource used with a Terrain object needs to be in one corner; all x and z

coordinates need to be positive. For more details on creating a terrain mesh for use with a Physics Terrain object, see

“Terrains” on page 319.

The technique described in this section allows you to create a terrain-shaped mesh with the origin point in any

position. The process of generating the terrain mesh is similar to the one described at “Terrains” on page 319. The

difference concerns the relative positions of the vertices and hence of the texture mappings. To see the technique in

action, download and launch the movie HugTerrain.dir.

The height of the terrain is read in from a grayscale bitmap

Data required to create a terrain mesh

The HugTerrain.dir movie uses a movie script named Create Terrain Mesh to generate a terrain mesh automatically.

In order to create a terrain mesh, you need to provide:

• A unique name for the model and resource to be created

• The dimensions of the mesh resource that you wish to create, in world units

• A mapping to connect x, z positions on the ground plane to y height values

• An origin point for the mesh

From this information the Create Terrain Mesh script can calculate:

• A vertex list

• A face list

• A textureCoordinate list

See “Creating a mesh resource” on page 170 for an example movie where these lists are created manually in

preparation for generating a mesh resource.

Using a bitmap image as a height map

One simple way to define the height of each point in a terrain is to use the grayscale image of a bitmap member. In this

example (HugTerrain.dir), white pixels are high and black pixels are low.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f08.html
http://www.adobe.com/support/director/examples/HugTerrain.dir

178ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Using a Bitmap member also gives you a simple way to define the origin point for the mesh resource: you can use the

member.regPoint of the Bitmap member. A Bitmap member has a width and a height, measured in pixels. A bitmap

of n x m pixels generates a rectangular terrain of (n - 1) columns and (m - 1) rows. Each pixel can store one of 256

different values, from 0 to 255. To convert these numbers into world unit dimensions, you need to apply a different

scale to each axis.

Here is a handler that you can use to find what scale to use for each axis. It returns a list containing three floating-point

values, in the format [<xScale>, <yScale>, <zScale>].

-- Lingo syntax
on GetScale(aBitmap, xUnits, yUnits, zUnits)

vColumns = float(aBitmap.width - 1)
vRows = float(aBitmap.height - 1)
vScale = []
vScale.append(xUnits / vColumns)
vScale.append(yUnits / 255.0)
vScale.append(zUnits / vRows)
return vScale

end GetScale

Example usage:

vScaleList = GetScale(member "HeightMap", 100, 39, 64)
put vScaleList
-- [6.6667, 0.1529, 3.3684]

You can now use the Bitmap's grayscale image data, its regPoint, and the scale list that you have just created to generate

a series of vertex points.

on GetVertexListFromBitmap(aBitmap, aScale)
vVertexList = []
vScaleX = aScale[1]
vScaleY = aScale[2]
vScaleZ = aScale[3]
vImage = aBitmap.image
vColumns = vImage.width - 1
vRows = vImage.height - 1
vRegPoint = aBitmap.regPoint
vOffsetX = vRegPoint.locH * vColumns / float(vColumns + 1)
vOffsetZ = vRegPoint.locV * vRows / float(vRows + 1)
repeat with zz = 0 to vRows

repeat with xx = 0 to vColumns
vX = (xx - vOffsetX) * vScaleX
vPixel = vImage.getPixel(xx, zz).red
vY = vPixel * vScaleY
vZ = (zz - vOffsetZ) * vScaleZ
vVector = vector(vX, vY, vZ)
vVertexList.append(vVector)
end repeat

end repeat
return vVertexList

end GetVertexListFromBitmap

Below is the output generated by a Bitmap member named “3x3” that displays 8 black pixels in a square around a

central white pixel. The member's regPoint is at point(3, 0), on the top right edge of the black square. The scale has

been chosen to create a mesh resource that will be 20 units wide along the xAxis and 30 units along the zAxis. The

maximum height of the terrain will be 20 units. The output has been edited and arranged neatly in columns, so that

you can see that the height of the eight outer vertices is 0 and the height of the central vertex is 10.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f6e.html

179ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

put GetVertexListFromBitmap(member("3x3"), [10,0.0392,15])
-- [vector(-20,0, 0), vector(-10, 0, 0), vector(0,0, 0),
vector(-20,0,15), vector(-10,10,15), vector(0,0,15),
vector(-20,0,30), vector(-10, 0,30), vector(0,0,30)]

You may like to step through the lines of code in the GetVertexListFromBitmap()handler to determine how these

values were calculated.

Generating the face list

To generate the face list, there is no need to know the actual vertex points. All that is required is to know the number

of vertices in each column and row.

on GetFaceList(aWidth, aLength)
vFaceList = []
vColumns = aWidth - 1 -- n vertices per row gives (n - 1) faces
vRows = aLength - 2 -- m vertices => (m - 1) faces, start at 0
repeat with zz = 0 to vRows
vRowAdjust = (zz) * aWidth
vRowAdjust = [vRowAdjust, vRowAdjust, vRowAdjust]

repeat with xx = 1 to vColumns
vFace = [xx, xx + aWidth, xx + 1] + vRowAdjust
vFaceList.append(vFace)
vFace = [xx + aWidth, xx + aWidth + 1, xx + 1] + vRowAdjust
vFaceList.append(vFace)
end repeat

end repeat
return vFaceList

end GetFaceList

To continue with the 3x3 terrain:

 -- [[1, 4, 2], [4, 5, 2], [2, 5, 3], [5, 6, 3], [4, 7, 5], [7, 8, 5], [5, 8, 6], [8, 9, 6]]

The diagram below illustrates the positions of the vertex points and how the points are linked together to form faces.

3 x 3 pixels, overlaid with the vertexList and face map

180ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Generating the TextureCoordinate List

To generate the textureCoordinate list, as with the face list, all that is required is to know the number of vertices in each

column and row. To create the textureCoordinates in the same order as the vertices, the GetTextureCoordinateList()

needs to start in the top left-hand corner, or in the lowest-numbered column of the highest-numbered row. It will

proceed left to right (from the first to the last column), and then top to bottom (from the last row to the first row).

on GetTextureCoordinateList(aWidth, aLength)
vTextureCoordinateList = []
vColumns = float(aWidth - 1)
vRows = float(aLength - 1)
zz = aLength
repeat while zz
zz = zz - 1
vZ = zz / vRows

repeat with xx = 0 to vColumns
vX = xx / vColumns
vCoordinate = [vX, vZ]
vTextureCoordinateList.append(vCoordinate)
end repeat

end repeat
return vTextureCoordinateList

end GetTextureCoordinateList

Below is the output for the 3 x 3 terrain, together with an illustration of the positions inside an arbitrary texture image.

put GetTextureCoordinateList(3, 3)
-- [[0.0, 1.0], [0.5, 1.0], [1.0, 1.0],
[0.0, 0.5], [0.5, 0.5], [1.0, 0.5],
[0.0, 0.0], [0.5, 0.0], [1.0, 0.0]]

The relative positions of the texture coordinates within a texture image

Texture mappings for each vertex of each face

You will recall that the face list that was generated automatically looks like this:

 -- [[1, 4, 2], [4, 5, 2], [2, 5, 3], [5, 6, 3], [4, 7, 5], [7, 8, 5], [5, 8, 6], [8, 9, 6]]

The list of textureCoordinates was generated in the same order as the vertexList. This means that the data used to

define the faces can also be used to define the texture mappings.

181ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Creating the mesh resource

All the data needed to generate the mesh resource is now available. Here is a Lingo function that puts all this data

together, and returns a mesh resource.

on GetMesh(a3DMember,aName,aFaceList,aVertexList,aTextureList)
vFaceCount = aFaceList.count
vNormalCount = 0 -- normals to be created automatically
vColorList = [rgb("#FFFFFF")]
vMesh = a3DMember.newMesh(\
aName, \
vFaceCount, \
aVertexList.count, \
vNormalCount, \
vColorList.count, \
aTextureList.count)
-- Apply the vertex data
vMesh.vertexList = aVertexList
vMesh.colorList = vColorList
vMesh.textureCoordinateList = aTextureList
-- Map data to each face
repeat with ii = 1 to vFaceCount
vFaceData = aFaceList[ii]
vMesh.face[ii].vertices = vFaceData
vMesh.face[ii].textureCoordinates = vFaceData
end repeat
-- Create a smooth mesh
vMesh.generateNormals(#smooth)
vMesh.build()
return vMesh

end GetMesh

Using the mesh

All this code allows you to provide just a unique name, a Bitmap image and the desired dimensions of your terrain mesh.

A wire frame view of the generated terrain

The 3 x 3 example allowed you to visualize each step in the calculation of a very simple terrain. However, the Create

Terrain Mesh script can handle much larger height-map images with ease. It can even use images that are created from

scratch at runtime. Terrains that are created by this script are simple models. They do not provide any automatic

collision detection.

For details on how to use ray casting for collision detection, see “Ray casting” on page 321. For details on how to create

a terrain model that is integrated with a Physics Terrain object, see “Terrains” on page 319.

182ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Mesh resources with multiple shaders

You can create a mesh resource with multiple shaders. This allows you to use different materials in the same model.

For example, you can create a cartoon television set with a screen that shows a realistic image. To see an example of a

single mesh with multiple shaders, download and launch the movie Frame.dir.

The Frame.dir movie creates a mesh with two large faces in the center (faces 1 and 2), which form a rectangular canvas

area, and 26 other faces to create a frame around the canvas (faces 3 to 28). Below is a handler that accepts five

parameters:

• a3DMember: a 3D cast member

• aName: a unique name, not yet used for a model resource

• aVertexList: a list of vector positions

• aFaceList: a list of three-item lists, used to define the faces of the mesh

• aShaders: a list of two shaders, one for the canvas, one for the frame

The CreatePicture() creates a new model resource, and applies the first shader to the two central faces. It applies the

second shader to all the other faces.

on CreatePicture(a3DMember,aName,aVertexList,aFaceList,aShaders)
vFaceCount = aFaceList.count
vMesh = member("3D").newMesh(\
aName, \
vFaceCount, \
aVertexList.count \
)
vMesh.vertexList = aVertexList
vMesh.colorList = []
repeat with ii = 1 to vFaceCount
vMesh.face[ii].vertices = aFaceList[ii]
if ii < 3 then

vMesh.face[ii].shader = aShaders[1]
else

vMesh.face[ii].shader = aShaders[2]
end if
end repeat
vMesh.generateNormals(#flat)
vMesh.build()
return vMesh

end CreatePicture

Note: In Director 11.5, if you add a standard shader to the faces of a mesh resource, the diffuse color of the shader is not

correctly applied unless the shader's useDiffuseWithTexture property is TRUE, even if the shader has no texture. If the

mesh resource has textureCoordinates applied to its faces, the diffuse color of the shader may fail to work altogether, even

if the shader's useDiffuseWithTexture property is set to TRUE.

Manipulating a mesh resource

In “Creating a mesh resource” on page 170, you can see step-by-step how to create a trick playing card which can be

used to display either a Jack of Spades or a Queen of Hearts. To try this for yourself, download and launch the movie

TrickCard.dir.

http://www.adobe.com/support/director/examples/Frame.dir
http://www.adobe.com/support/director/examples/TrickCard.dir

183ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Check Show Animation then click on Show Jack to fold the trick card

If you click the Show Jack button, the flap showing the Queen is folded back on itself. If you click the Show Queen

button, the same flap is folded the other way, to hide the Jack. If you click on Reset, the card is restored to its initial

position. If you check the Show Animation check box, then the folding process is animated.

Modifying the vertexList

To move the flap at the front of the card, you need to change the entries in the vertexList of the mesh resource. Here

is what the vertexList looks like initially. Note the values for the vertices at index numbers 5 and 6:

put member("3D").model(1).resource.vertexList
-- [vector(0.0000, 0.0000, 0.0000),
vector(0.0000, 256.0000, 0.0000),
vector(-96.0000, 0.0000, 0.0000),
vector(-96.0000, 256.0000, 0.0000),
vector(0.0000, 0.0000, 96.0000),
vector(0.0000, 256.0000, 96.0000),
vector(96.0000, 0.0000, 0.0000),
vector(96.0000, 256.0000, 0.0000)]

Here is how to set the vertexList so that the card model folds back to show the Jack:

member("3D").model(1).resource.vertexList[5] = vector(96, 0, 1)
member("3D").model(1).resource.vertexList[6] = vector(96, 256, 1)

The vertex points in at positions 5 and 6 in the vertexList are now practically aligned with the vertex points in at

positions 7 and 8. The illustration below helps you to visualize this.

184ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The index numbers of faces (green) the vectors in the mesh's vertexList (black)

Note: There is a slight difference between the positions of the vertex points 5 and 7 and between the positions of the vertex

points 6 and 8. If the positions were identical, the face of the queen may appear through either the Jack or the back of the

card. Keeping a slight gap between the faces enables Director to know which face must appear on top.

Modifying the normalList

If you execute the commands given above in the Message window, you will see a problem with the lighting of the faces

whose vertex points have changed.

Modifying the vertexList does not automatically update the lighting normals

The faces that have been rotated are still lit as if they were in their original position. It is easy to correct that. First you

need to discover which entries in the mesh resource's normalList need to be updated for face 3 and face 4:

185ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

put member("3D").model(1).resource.normalList
-- [vector(0.0000, 0.0000, 1.0000),
vector(0.0000, 0.0000, 1.0000),
vector(-1.0000, 0.0000, 0.0000),
vector(-1.0000, 0.0000, 0.0000),
vector(1.0000, 0.0000, 0.0000),
vector(1.0000, 0.0000, 0.0000),
vector(0.0000, 0.0000, 1.0000),
vector(0.0000, 0.0000, 1.0000),
vector(0.0000, 0.0000, -1.0000),
vector(0.0000, 0.0000, -1.0000),
vector(0.0000, 0.0000, -1.0000),
vector(0.0000, 0.0000, -1.0000)]

This indicates that the mesh resource's normalList still thinks that faces 3 and 4 are looking towards the left in the

direction defined by vector(-1, 0, 0). To correct this, execute the two lines of code below:

member("3D").model(1).resource.normalList[3] = vector(0, 0, 1)
member("3D").model(1).resource.normalList[4] = vector(0, 0, 1)

The faces are now turned to face the front, along the world's zAxis, and the lighting now looks correct.

Showing the flap at any angle

You need to do a little trigonometry in order to be able to fold the flap to any angle. The following handler accepts an

angle in degrees.

on ShowFacesAt(aAngle)
vCard = member("3D").model(1).resource
vSine = sin(aAngle * pi / 180)
vCosine = cos(aAngle * pi / 180)
vQueenNormal = vector(vCosine, 0, -vSine)
vJackNormal = vector(-vCosine, 0, vSine)
vX = vSine * 96.0
vZ = max(vCosine * 96.0, 1)
vCard.vertexList[5] = vector(vX, 0, vZ)
vCard.vertexList[6] = vector(vX, 256, vZ)
vCard.normalList[3] = vJackNormal
vCard.normalList[4] = vJackNormal
vCard.normalList[5] = vQueenNormal
vCard.normalList[6] = vQueenNormal

end ShowFacesAt

To show the Jack, the angle must be positive, to show the Queen it must be negative. The angle must be in the range -

90° to +90°. Note that the positions for only 2 vertices are reset, but this moves 4 separate faces, so 4 sets of normals

need to be updated.

Modifying other properties

You can modify any property of a #mesh resource, including:

• meshResource.vertexList

• meshResource.textureCoordinateList

• meshResource.normalList

• meshResource.colorList

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7ab5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a10.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7993.html

186ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

You can also modify the properties of individual faces. However, these changes do not take effect until you issue a

meshResource.build() command. The build() command also resets all shaders attached to all models that use the mesh

resource to the default value. Using the build() command can take a significant number of milliseconds, so it is not

something that you must plan to do on every frame. You can access the following properties of each face:

• meshResource.face[aIndex].vertices

• meshResource.face[aIndex].colors

• meshResource.face[aIndex].normals

• meshResource.face[aIndex].shader

• meshResource.face[aIndex].textureCoordinates

MeshDeform modifier

Adding the #meshDeform modifier to a model give you access the structure of the model's modelResource. If you

modify the geometry of the modelResource of a model, all models that use the given modelResource will be affected.

Note: You do not need to use the #meshDeform modifier with models whose resource is of the type #mesh: you can access

the properties of a #mesh resource directly.

To see the #meshDeform modifier in action, download and launch the movie MeshDeform.dir.

The MeshDeform.dir movie allows you to drag individual vertices of a primitive model

The MeshDeform.dir movie shows two models created with the same primitive modelResource. When you deform

one of the models, the other is deformed in an identical way. This article starts with a description of the data to which

the meshDeform modifier gives you access, and then describes how this data is used in the MeshDeform.dir movie.

The diamond-shaped models in the MeshDeform movie provide the example data shown below. The MeshDeform.dir

movie uses a number of operations in 3D mathematics to calculate the new positions of the vertices and the new

direction of the vertex normals. See “3D mathematics” on page 361 for more details on the operations themselves.

Adding the meshDeform modifier to a model

The following command adds the #meshDeform modifier to model 2, named "DeformMe", of the member "3D".

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a12.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74eb.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74f0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a0f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bb7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6866.html
http://www.adobe.com/support/director/examples/MeshDeform.dir

187ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo syntax
member("3D").model("DeformMe").addModifier(#meshDeform)
put member("3D").model("DeformMe").modifier
-- [#meshDeform]
// JavaScript syntax
member("3D").getPropRef("model", 2).addModifier(symbol("meshDeform"));
1
trace(member("3D").getPropRef("model", 2).modifier)
// <[#meshDeform]>

Note: If you add the #meshDeform modifier to one model with a given modelResource, all other models that use the same

modelResource will have access to the modifier too. Adding the #meshDeform modifier to a model in fact applies the

meshDeform to the model's resource, which may be shared with other models.

Removing the modifier

You can use the command aModel.removeModifier() to remove the #meshDeform modifier.

member("3D").model("DeformMe").removeModifier(#meshDeform)
// JavaScript syntax
member("3D").getPropRef("model", 2).removeModifier(symbol("meshDeform"));

Meshes and faces

The #meshDeform modifier groups the faces of a given model in meshes. Every mesh in a modelResource is associated

with one of the shaders in the shaderList of the model. Use aModel.meshDeform.mesh.count to determine how many

meshes a model has. The result will always be identical to aModel.shaderList.count. You can use

aModel.meshDeform.face.count to determine the total number of faces in a mesh. However, to access any of the face

properties, you must pass through the appropriate mesh.

Mesh properties

 Each face of a mesh has three vertices. Each of these vertices has five properties associated with it:

• vertex position

• normal

• textureCoordinate

• color

• neighbor

The values of all these properties, except for ‘neighbor’, is stored in a separate list accessible through the mesh. The lists

are all ordered in the same way. The nth item in any list gives the value for one property at the nth vertex point.

• aModel.meshDeform.mesh[meshIndex].vertexList stores the list of all the vertex points used by the

modelResource. The same vector position may appear multiple times in the vertexList. Two faces can share a vertex

position, but actually use different vertex points to express that position. If this is the case, moving one of the vertex

points will separate the faces at that point. Other vertices may be shared by many faces. In this case, moving the

vertex point will deform all the faces.

• aModel.meshDeform.mesh[meshIndex].normalList stores a list of the normals to the surface of the mesh at each

vertex. If two faces share the same vertex they will also share the same normal at that point. If the two faces have

two different vertex points at an identical position, then the values for the normal at that position may be different

for the two faces.

• aModel.meshDeform.mesh[meshIndex].textureCoordinateList stores the list of the texture coordinates associated

with each vertex point. If two faces share the same vertex the will share the same textureCoordinateList value.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aa4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a10.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7ab5.html

188ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

• aModel.meshDeform.mesh[meshIndex].colorList may be a list of the individual colors at each vertex point.

However, this list may have no entries if no colors are defined. Nonetheless, accessing

aModel.meshDeform.mesh[meshIndex].colorList[colorIndex] does not cause an error, even if

colorIndex is an out-of-range integer (see Accessing face values below).

Example values

In the MeshDeform.dir movie, a model resource is created using the #sphere primitive (see sphere properties). This

leads to a shape where all the normals face outwards from the center of the model. The illustration below shows the

index numbers for the various vertices. You will notice that the positions vector(0, 25, 0) and vector(0, -25, 0) are

defined multiple times. Vertices 1 and 15 are not used to create any faces.

The positions of the various vertex points in the mesh resource

The table below shows the values at each index point in the vertexList, normalList, textureCoordinateList, and

colorList for the first (and only) mesh in the resource.

index vertexList normalList textureCoordinateList colorList

1 vector(0, 25, 0) vector(0, 1, 0) [0.9999, 0.9999]

2 vector(0, 0, 25) vector(0, 0, 1) [0.9999, 0.4999]

3 vector(0,-25, 0) vector(0,-1, 0) [0.9999, 0.0001]

4 vector(0, 25, 0) vector(0, 1, 0) [0.7499, 0.9999]

5 vector(25, 0, 0) vector(1, 0, 0) [0.7499, 0.4999]

6 vector(0,-25, 0) vector(0,-1, 0) [0.7499, 0.0001]

7 vector(0, 25, 0) vector(0, 1, 0) [0.4999, 0.9999]

8 vector(0, 0,-25) vector(0, 0,-1) [0.4999, 0.4999]

9 vector(0 -25, 0) vector(0 -1, 0) [0.4999, 0.0001]

10 vector(0, 25, 0) vector(0, 1, 0) [0.2499, 0.9999]

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7993.html
http://www.adobe.com/support/director/examples/MeshDeform.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7ffc.html

189ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Face values

To determine the value of each of these properties for a given face, first retrieve the value of

aModel.meshDeform.mesh[meshIndex].face[faceIndex]. This returns a list containing three integers. These

integers give the index numbers of the vertices of the given face.

-- Lingo syntax
member("3D").model(1).meshDeform.mesh[1].face[7]
-- [13, 14, 11]

Accessing face values

To determine the value of a particular property at a particular vertex, you can use expressions similar to the following:

-- Lingo syntax
put member("3D").model(1).meshDeform.mesh[1].vertexList[13]
-- vector(0.0000, 25.0000, 0.0000)
put member("3D").model(1).meshDeform.mesh[1].normalList[13]
-- vector(0.0000, 1.0000, 0.0000)
put member("3D").model(1).meshDeform.mesh[1].textureCoordinateList[13]
-- [0.0001, 0.9999]
put member("3D").model(1).meshDeform.mesh[1].colorList[13]
-- color(0)
// JavaScript syntax
trace(member("3D").getPropRef("model", 1).getPropRef("meshDeform", 1).getPropRef("mesh",
1).vertexList[13]);
// <vector(0.0000, 25.0000, 0.0000)>
trace(member("3D").getPropRef("model", 1).getPropRef("meshDeform", 1).getPropRef("mesh",
1).normalList[13]);
// <vector(0.0000, 1.0000, 0.0000)>
trace(member("3D").getPropRef("model", 1).getPropRef("meshDeform", 1).getPropRef("mesh",
1).textureCoordinateList[13]);
// <[0.0001, 0.9999]>

As the example above shows, the colorList for the sphere resource's mesh is empty. However, using Lingo to access a

non-existent entry does not result in an error. A default value is returned.

 -- color(0)
Other invalid Lingo calls will also fail more or less gracefully.
put member("3D").model(1).meshDeform.mesh[1].colorList[123]
-- color(0)
put member("3D").model(1).meshDeform.mesh[1].colorList[-1]
-- <Null>
put member("3D").model(1).meshDeform.mesh[1].face[-1]
-- [0, 0, 0]

JavaScript, however, applies the rules more strictly. If you attempt to access a non-existent entry, a script error occurs.

11 vector(25, 0, 0) vector(1, 0, 0) [0.2499, 0.4999]

12 vector(0,-25, 0) vector(0,-1, 0) [0.2499, 0.0001]

13 vector(0, 25, 0) vector(0, 1, 0) [0.0001, 0.9999]

14 vector(0, 0, 25) vector(0, 0, 1) [0.0001, 0.4999]

15 vector(0,-25, 0) vector(0,-1, 0) [0.0001, 0.0001]

index vertexList normalList textureCoordinateList colorList

190ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Neighbor data

Any given face may have 0 or more neighbors along a given edge. In the illustration below, the face ABC has two

neighbors on the edge opposite vertex A, one neighbor on the edge opposite vertex B and no neighbors on the edge

opposite vertex C.

A manifold mesh may have three or more faces meeting at one edge

You can obtain information about the neighboring faces of a given face using the neighbor property. You can use the

following Lingo code to find out which face is the neighbor to face seven, opposite vertex 13. First, find where vertex

13 appears in the list of vertices for face 7.

put member("3D").model(1).meshDeform.mesh[1].face[7]
-- [13, 14, 11]

Now you know that 13 is vertex one in the face list for face seven, you can ask for the neighbor of vertex one:

put member("3D").model(1).meshDeform.mesh[1].face[7].neighbor[1]
-- [[1, 8, 2, 1]]

191ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

The neighbor for face 7 opposite vertex 13 is face 8

The output is in the form of a list of lists. A face may have 0, 1, or many neighbor faces on a given edge. In this case

there is only one face, so only one sub-list. The 4 integers in the sublist indicate:

• The meshID

• The faceID

• The position index of the vertex on the far side of the neighbor face

• A Boolean to indicate if the normal of the neighbor face is flipped

In this case, the output tells you that the neighbor is the face indicated in this expression:

put member("3D").model(1).meshDeform.mesh[1].face[8]
-- [14, 12, 11]

Note that vertex 12, opposite to vertex 13 is in the 2nd position in the face definition list.

Manipulating the model resource using the meshDeform modifier

The easiest way to understand how all this data is organized is with an example. Launch the movie MeshDeform.dir,

and click at the top of the closest face, as shown in the screenshot below.

http://www.adobe.com/support/director/examples/MeshDeform.dir

192ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Click and drag to rotate a face round the opposite edge

On mouseDown, the Mesh Deform behavior in the movie uses modelsUnderLoc() to detect where you clicked. The

list returned by call contains the following data:

[[#model:model("Deformable octahedron"),
#distance: 109.1726,
#isectPosition: vector(1.0218, 23.5829, 0.3953),
#isectNormal: vector(0.5774, 0.5774, 0.5774),
#meshID: 1,
#faceID: 7,
#vertices: [vector(0.0000, 25.0000, 0.0000),
vector(0.0000, 0.0000, 25.0000),
vector(25.0000, 0.0000, 0.0000)],
#uvCoord: [#u: 0.0158, #V: 0.0409]]]

The information shown in bold above is used to work out which is the nearest vertex. The handlers executed during

the #mouseDown event access the data stored in the meshDeform object. They use this to create a property list

containing all the information required to rotate the vertex point around the opposite edge of its face.

Updating normals

It is not enough just to update the position of the vertex point. If the normals of each vertex are not updated, then the

face continues to react to light as if it were in its original orientation. In the Mesh Deform behavior, after moving the

vertex point, the mMoveVertex() handler calls mUpdateNormals(). This sets the normal of the dragged vertex at right

angles to the face, and sets the normals of the two other vertices of that face to the average of the normal to that face

and its neighbor.

Note: Wherever vertices are shared between faces, the normals at those vertex points are also shared. If you use the

#meshDeform modifieron models that are custom-built for the project, you may need to make sure that the model is

specifically constructed to allow the deformations that you want to apply.

Multiple texture layers

With the #meshDeform modifier, you can add extra texture layers to specific faces. See add (3D texture) and

textureLayer.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7988.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b5c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7ab6.html

193ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Dragging in world space and mesh space

There are many possible techniques for dragging the vertex point of modelResource around, using the #meshDeform

modifier. To explore a different technique, download and launch the movie SimpleMeshDeform.dir.

 In SimpleMeshDeform.dir, you can drag the vertex point in the same plane as the sprite

The technique for dragging a point in the plane parallel to the sprite is described in more detail in “Dragging” on

page 250. However, the point being dragged here is defined in terms of the resource space, not the world space. To

convert from world space to resource space, the mMoveVertex() handler of the Simple Mesh Deform behavior

performs a multiplication using the inverse of the transform of the model. The following is the Lingo code that places

the vertex 10 of the modelResource of model 2 at the point vector(60, 0, 0) in world coordinates.

vModel = member("3D").model(2)
vWorldPosition = vector(60, 0, 0)
vTransform = vModel.getWorldTransform()|
Inverse = vTransform.inverse()
vMeshPosition = vInverse * vWorldPosition
vModel.meshDeform.mesh[1].vertexList[10] = vMeshPosition

For more details about this, see “Transforms” on page 370.

Level of detail (LOD) modifier

In the real world, as objects get further away, the less detail is visible. In a virtual 3D world, faces that are far from the

camera appear tiny. Nevertheless, the computer processor must spend as much time calculating the color of the pixels

for a distant face as for a face close to the camera. The solution is to simplify the geometry of distant models, so that

they have fewer faces. All model resources created in third-party 3D design software contain data that allows the

Shockwave 3D engine to reduce the level of detail on models far from the camera. You can set the lod properties of

the imported model resource directly.

The modelResource of a model created in third-party 3D design software contains the following properties that

modelResources created from Director primitives do not:

• modelResource.lod.auto

• modelResource.lod.bias

• modelResource.lod.level

http://www.adobe.com/support/director/examples/SimpleMeshDeform.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7570.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7592.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7591.html

194ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

These properties apply to all models to which the LOD modifier has not been added. The LOD modifier allows you to

customize the level of detail shown on model on an individual basis. Even when you change the settings at the resource

level, the LOD feature acts on the model, not on the resource. Two models that share the same resource can display

different numbers of faces, depending on how close they are to the camera. The #lod modifier lets you give individual

models their own lod settings, independently of the lod settings for the shared model resource. To see the #lod modifier

in action, download the movie LOD.dir, and launch it.

The #lod modifier lets you set how aggressively to simplify model geometry as distance from the camera increases

The LOD.dir movie uses a wire frame shader. To make the effect obvious, select a low value for bias, and ensure auto

is checked. Now drag the sphere around. You will see the value of level change as sphere moves closer to away from

the camera.

Note: Models created in Director from 3D primitives do not contain LOD data. There is no advantage to be gained from

adding the LOD modifier to such models.

Adding the LOD modifier to a model

The following command adds the #lod modifier to model 2, named “LoseDetail”, of the member “3D”.

-- Lingo syntax
member("3D").model("LoseDetail").addModifier(#lod)
put member("3D").model("LoseDetail").modifier
-- [#lod]
// JavaScript syntax
member("3D").getPropRef("model", 2).addModifier(symbol("lod"));
1
trace(member("3D").getPropRef("model", 2).modifier)
// <[#lod]>

Removing the modifier

You can use the command aModel.removeModifier() to remove the #lod modifier.

-- Lingo syntax
member("3D").model("LoseDetail").removeModifier(#lod)
// JavaScript syntax
member("3D").getPropRef("model", 2).removeModifier(symbol("lod"));
1

http://www.adobe.com/support/director/examples/LOD.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aa4.html

195ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

LOD properties

The #lod modifier adds three properties to a model:

• model.lod.auto: If TRUE, the model obeys the lod.bias setting. If FALSE, it obeys the lod.level setting.

• model.lod.bias: Floating point value from 0.0 to +100.0. If set to 0.0, the LOD modifier removes all polygons, even

when the model is immediately in front of the camera. If it is set to 100.0, it does not start to remove polygons until

the model appears very small in the distance. The precise distance at which the bias setting starts to take effect

depends on the camera's projection angle. The default setting is 100.0.

• model.lod.level indicates the amount of detail removed by the modifier when its auto property is set to FALSE. The

range of this property is 0.0 to 100.00. When the modifier’s auto property is set to TRUE, the value of the level

property is dynamically updated. If you set the value manually, it will not have any effect.

With lod.bias at 100.0, the auto setting starts to take effect when the model appears small in the distance

See also targetFrameRate.

Subdivision surfaces (SDS) modifier

The #sds modifier adds geometric detail to models and synthesizes additional details to smooth out curves as the model

moves closer to the camera. The #sds modifier directly affects the model resource. All models that use the same

resource will be affected. To see the effect of the #sds modifier, download the movie SDS.dir, and launch it.

Note: The #sds modifier and the #lod modifier behave in contrasting ways. Before adding the sds modifier, it is

recommended that you set the lod.auto modifier property to FALSE and set the lod.level modifier property to the

required resolution, as follows:

vModel = member("3D").model("myModel")
vModel.lod.auto = 0
vModel.lod.level = 100
vModel.addmodifier(#sds)

The #sds modifier is best used on models that were created in a third-party 3D design application. If used with models

created from Shockwave 3D primitives, the modifier affects the model resource, and all the models that share that

resource.

Adding the SDS modifier to a model

The following command adds the #sds modifier to model 2, named "MakeMeSmooth" of the member "3D".

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7570.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7592.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7591.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7278.html
http://www.adobe.com/support/director/examples/SDS.dir

196ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

-- Lingo syntax
member("3D").model("MakeMeSmooth").addModifier(#sds)
put member("3D").model("MakeMeSmooth").modifier
-- [#sds]
// JavaScript syntax
member("3D").getPropRef("model", 2).addModifier(symbol("sds"));
trace(member("3D").getPropRef("model", 2).modifier)
// <[#sds]>

Note: If you add the sds modifier to one model with a given modelResource, all other models that use the same

modelResource will have access to the modifier too. Adding the sds modifier to a model in fact applies the sds feature to

the model's resource, which may be shared with other models.

Removing the modifier

You can use the command aModel.removeModifier() to remove the #sds modifier.

-- Lingo syntax
member("3D").model("MakeMeSmooth").removeModifier(#sds)
// JavaScript syntax
member("3D").getPropRef("model", 2).removeModifier(symbol("sds"));
1

SDS properties

The #sds modifier adds the following properties to all models that share the same modelResource:

• model.sds.enabled indicates whether subdivision surfaces functionality is enabled (TRUE) or disabled (FALSE).

The default setting for this property is TRUE.

• model.sds.depth specifies the maximum number of levels of resolution that the model can display when using the

#sds modifier.

• model.sds.error indicates the level of error tolerance for the subdivision surfaces functionality. This property

applies only when the sds.subdivision property is set to #adaptive.

• model.sds.subdivision indicates the mode of operation of the subdivision surfaces modifier. Possible values are as

follows:

#uniform Specifies that the mesh is uniformly scaled up in detail, with each face subdivided the same number of

times.

#adaptive specifies that additional detail is added only when there are major face orientation changes and only to

those areas of the mesh that are currently visible.

SDS and spot lights

If you are using spot lights with a narrow beam, then smaller faces give a better result. A face is lit correctly only if all

three vertex points are within the light beam. If the faces are large, compared to the light beam, the beam may "hit" the

center of a face, but not its vertices. In this case, the face does not light up at all. See “How faces are lit” on page 127 for

more details.

You can use the #sds modifier to increase the density of the vertices in a model, so that it responds better to spot lights

with a narrow beam.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aa4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-72bf.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-747d.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74bd.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-747e.html

197ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Flat shading and smooth shading

When you use meshResource.generateNormals(), you can choose between #flat and #smooth. In a shader, you can set

the #flat property to TRUE or FALSE. These properties determine how normals are treated over the surface of each

face. Each face has one normal vector associate with each vertex. These normals may be pointing in different directions

(blue in the illustration below). With flat shading, the average of the three normals is applied to even point on the face

(green in the illustration below). This gives the impression of a flat triangle for each face.

Comparison of flat shading (gray triangle) and smooth shading (curved outlines)

With smooth shading, for each point on the surface of the face, a unique value is calculated for the normal, based on

an interpolation from all three normals at the vertex points. This requires more processor time. Each face still has a

triangular shape, but the shading varies smoothly across the surface to give the illusion than the surface is curved. For

more details, see these links:

• http://en.wikipedia.org/wiki/Flat_shading

• http://en.wikipedia.org/wiki/Gouraud_shading

• http://en.wikipedia.org/wiki/Phong_shading

Particles

Particle systems are unique among model resources in that they include animation by default. Instead of being shapes,

they create cascades of moving particles.

Particle systems, whose type is #particle, can have an infinite variety of appearances, simulating fire, smoke, running

water, and other streaming or bursting effects.

Defining a particle system

To generate a unique particle effect, you can set up to 22 different properties. These include start and end size, blend

and color of the particles, speed, and direction of initial movement, the effects of gravity and wind, and so on. See

Particle system properties for the complete list of properties that you can use with a Particle system.

Also, view the sample movie, Particle.dir.

You cannot import particle resources from a third party 3D design application, so you have to build them directly in

Director, using the #particle primitive. This means that, at least once, you have to create the Particle system manually.

This often means using trial and error.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a82.html
http://en.wikipedia.org/wiki/Flat_shading
http://en.wikipedia.org/wiki/Gouraud_shading
http://en.wikipedia.org/wiki/Phong_shading
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7ff3.html
http://www.adobe.com/support/director/examples/Particle.dir

198ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Saving a particle system

There are two ways you can save the Particle system that you have created:

• If you use the member3D.saveWorld() command, then save your movie, Director saves the current state of your

world, including the state of any Particle system that you have created. See Saving the 3D world for more details.

• Saving the entire world may not be practical, especially if you want to compare slight variations in the Particle

system that you are working on. The alternative is to save the current state of a Particle system as a property list,

and then use that property list to regenerate the Particle system at a later time. The Particles.dir movie uses the

second system to generate the different demonstration Particle systems. It includes a script named Particle Script,

which has two main handlers:

• Particle_GetScriptText(a3DMember, aParticleName)

• Particle_SetProperties(a3DMember, aParticleName, aPropList). You can use the first to generate a string that

you can paste into a Script member. This will create a new script. Calling the Particle_GetPropertyList() handler

of this new script returns a property list that you can use with the Particle_SetProperties() handler of the Particle

Script.

Using the Particle Script

To test this for yourself, you can follow the steps below.

Creating a new script that will regenerate a Particle modelResource

1 Make some changes to the properties of the Particle Test modelResource.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-68df.html
dir_introduction_graphics_ig.xml#WS287f927bd30d4b1f-16da6c571302102f121-7f76

199ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

2 In the Message window, execute the following command:

 new(#script).scriptText = Particle_GetScriptText(member("3D"), "Particle Test")

This will create a new Movie Script member in your movie.

3 Stop the movie and restart it. All the changes that you made to the Particle system will be lost.

4 In the Message window, execute the commands below:

vList = Particle_GetPropertyList() -- in your new
scriptParticle_SetProperties(member("3D"),"Particle Test",vList)

Initially, the new script will be created as a Movie Script. If you call Particle_GetPropertyList(), only the first movie

script with that handler will respond. If you want to create a number of different Particle systems, you can give the

scripts different names. The following are some commands to test in the Message window.

v3DMember = member("3D")
vName = "Explosion"
vPropList = script(vName).Particle_GetPropertyList()
vResource = Particle_SetProperties(v3DMember, vName, vPropList)
vModel = v3DMember.newModel(vName, vResource)
Using textured particles

These commands create a new particle modelResource, and a new model, using the data stored in the Explosion

script.

In the Snow example in the Particles.dir movie, the snowflakes display a texture. Each particle is in fact a square plane.

If you set the texture property of a #particle modelResource, that texture will be applied to the square plane. You can

use a 32-bit image with transparency in the alpha to hide parts of the square. Since the snowflakes are round, a square

texture mapped to a square plane works perfectly.

You can change the texture of a #particle modelResource on the fly. Immediately, all the particles will change their

texture. To see this in action, show the Snow particles in the Particles.dir movie, then click on the 3D sprite. You will

see the snowflakes spin. To see another example of textured particles, download and launch the movie Balloons.dir.

The balloon particles do not appear to be square, because of the alpha-channel transparency in the texture.

In this movie, too, the texture is mapped to a square plane. However, only a narrow part of the texture is opaque, so

the balloon particles appear to be tall and thin. See “Images for textures” on page 144 for more details.

http://www.adobe.com/support/director/examples/Particles.dir
http://www.adobe.com/support/director/examples/Particles.dir
http://www.adobe.com/support/director/examples/Balloons.dir

200ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Multiple particle systems

A single particle system gives you a single type of particles. In the Snow example, in the Particles.dir movie, all the

snowflakes are the same shape. When you are mimicking a real-world phenomenon, such as fire, you will want to have

a variety of colors and shapes in the particles. To do this, you can create multiple particle systems, each with slightly

different properties. The Balloons.dir movie creates six particle emitters, all using the same texture, but with six

different colors.

Emitter.region

By default, the particleResource.emitter.region property is set to a single vector position.This makes all particles

appear at that point. You can set the emitter.region property to a line between two vector points, or to a quadrilateral

between four vector points. For example, the emitter for the Snow particle can be set as follows:

vParticle = member("3D").modelResource("Particle Test")
vParticle.emitter.region = [vector(-75, -50, 0), vector(75, -50, 0), vector(-75, 50, 0),
vector(75, 50, 0)]

If you are used to working with 2D quads, you may expect the points in the emitter.region to follow each other in

sequence around the four corners of the quadrilateral. In fact, they follow a Z pattern, as shown in the illustration

below.

Defining the points of an emitter region

Moving the emitter.region

You may wish to move the Particle system around. For example, a trail of smoke from a car exhaust needs to follow

the car around. The obvious solution is to attach the Particle emitter model to the car. However, if you do this, the

particles that are emitted seem to be attached to the car in an unnatural fashion. A better solution is to place the model

in a fixed location at the center of the world, and move its emitter.region around. To see an example of this, download

and launch the movie Flame.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74ab.html
http://www.adobe.com/support/director/examples/Flame.dir

201ADOBE DIRECTOR BASICS

3D: Controlling appearance

Last updated 3/24/2014

Creating a realistic movement means moving the emitter.

Click on the 3D sprite and drag the flame around. Notice the difference between modifying the transform.position

of the model and modifying the emitter.region of the resource. Pressing the Control/Command key updates the

position of the emitter region inside a tight repeat loop. Pressing the Shift key will, in addition, adjust both the Particle

emitters used by the flame to make the movement of the flame as realistic as possible.

Scale

If you scale a model that displays a particle, the size of the particles themselves will not change. To scale the particles,

you will need to modify the sizeRange properties, and also the various speed properties, such as maxSpeed, gravity,

and wind. The Particle_Scale() handler in the Particle Script can do this for you. Note that scaling these properties

affects every model that uses the Particle resource.

Billboards with a single particle

The planes that display the particles from a Particle system always turn to face the camera. You can use this to create

billboards from a single static particle. You can use Particle systems like this to create signposts in an interplanetary

adventure, or trees in the distance. To see this in action, download and launch the movie Billboard.dir.

Note: If you used Particle system billboards for trees close to the camera, then the trees appear to lean towards the user as

the camera approaches.

Particles automatically turn to face the camera; a single static particle provides a 3D billboard

http://www.adobe.com/support/director/examples/Billboard.dir

202

Last updated 3/24/2014

Chapter 4: 3D: Controlling action

For many of your projects, almost all the visible 3D assets will be created in third-party 3D design applications. Your

job as a Director developer will often be to take those static assets and create an interactive experience from them.

The Lingo or JavaScript code that you write does more than simply control 3D objects. It brings a world to life. You

are not just writing code, you are telling a story.

End-users do not care how hard it is to make a particular interaction appear simple. They want to forget about the

mechanics of interacting with the 3D world, and immerse themselves in the experience. If an end-user becomes aware

of your work as a programmer, it will probably be because you have done something wrong or unexpected.

This section provides you with the techniques that you will need to make your work invisible.

Arranging objects in a 3D world

In a 2D world, you can define an absolute position for each sprite, by measuring from the top left corner of the Stage.

You can also rotate and scale sprites around their regPoint.

In a 3D world, the situation is similar. You can define the absolute position, rotation, and scale of a 3D node relative

to the axes of the group("World"). Every node has a worldPosition property, which defines its position relative to the

center of the group("World"). For each node, you can use getWorldTransform() to determine its position, rotation

and scale relative to the group("World").

One major difference between a 2D and a 3D world is that the viewing position is fixed in a 2D world. In a 3D world,

everything that is drawn on the screen is shown from the viewpoint of the camera. The camera can move through 3D

space, rotate around objects, and look at the world from any angle. In many cases, absolute information about a node

is much less useful than relative information. Often you want to know the position, rotation, and scale of one node

relative to another node.

Shockwave provides you with many ways to express positions, rotations, scales, and movements in 3D space. To work

efficiently with these capabilities, you need to be familiar with the following ideas:

• Frames of reference. See “Frames of reference” on page 202.

• Transforms and their properties. See “Transforms” on page 204.

• How to set the position of a node. See “Setting a node's position” on page 205.

• How to move a node relative to a frame of reference. See “Translation” on page 206.

• How the scale and orientation of the frame of reference affects movements in a straight line. See “Translation” on

page 206.

• How the origin point of the frame of reference affects rotations. See “Setting the rotation of a node” on page 208.

Frames of reference

In 3D, everything is drawn relative to the camera’s frame of reference. If the camera is behind an object, when the

object moves to the left relative to the center of the world (the world origin), it appears to move toward the right of the

screen.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f6e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bed.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9b.html

203ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Each piece of position and orientation information can be expressed relative to one or more frames of reference. A

model’s transform property, for instance, expresses its position and rotation relative to the model’s parent.

When you use code to move a model, you must define the frame of reference for the movement. You define a frame

of reference by referring to a node. You can use the symbols #self, #parent and #world as shortcuts for specific

nodes (see the table below). You can also refer directly to a particular node.

In other words, there are four frames of reference to consider:

• relative to the object (model, group, light, camera) itself (#self)

• relative to the object’s parent (#parent)

• relative to the world (#world)

• relative to some other object (referred to explicitly).

Here are examples of movements made within each of these frames of reference.

Object-relative

When you create a model in a 3D-modeling program, you build it relative to its own frame of reference. For instance,

when you create a model of a car, the front of the car may be pointed along its z-axis and the antenna may be pointed

along its y-axis. To move such a car forward (along its z-axis) regardless of which direction it is pointing relative to the

camera or the world, use car.translate(0,0,10). To turn the car left, use car.rotate(0,45,0).

The car model may have wheel models as children. To rotate the wheel of a car relative to itself, rather than relative to

its parent (the car), use the following script:

wheel.rotate(0,10,0)

or

car.child[1].rotate(0,10,0, #self)

where the fourth parameter of the rotate method is the object, the rotation is relative to.

Parent-relative

Parent-relative: A model’s transform property expresses its position and rotation relative to the model’s parent. If you

want the wheels of the car to move outward regardless of how the wheels are turned, use

car.child[1].translate(10,0,0,#parent) or car.child[1].transform.translate(10,0,0). If you want a

planet model that is a child of the sun to orbit around the sun, use planet.rotate(0,5,0, #parent).

World-relative

World-relative: If you want the car to move along the world’s x-axis regardless of which way it is facing, use

model.translate(10,0,0,#world). If you want to rotate the car 20° around the world y-axis, with the rotation

taking place at the world location vector (10, 10, 10), use model.rotate(vector(10,10,10), vector(0,1,0), 20,

#world).

#self or no reference refers to the node that you are moving

#parent refers to the parent of the node that you are moving

#world refers to the group("World")

204ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Relative to another object

Relative to another object: If you want to move an object so that it goes toward the right edge of the screen, use

model.translate(vector(10,0,0), sprite(1).camera). If you want to rotate the object parallel to the camera

and around the center of the screen, use model.rotate(vector(0,0,0), vector(0,0,1), 20,

sprite(1).camera).

Transforms

2D sprites have a number of properties that define where and how they appear on the Stage. For example, the loc,

rotation and skew properties are all properties of the sprite itself.

In a 3D world, nodes have a worldPosition property, which is the 3D equivalent of the 2D sprite.loc property. For

more details, see “Setting a node's position” on page 205.

Transform properties

All the other properties that determine the position and orientation of a node belong to the node's transform, and not

to the node directly. You can find a complete table of transform properties at Transform Properties.

A transform has four properties that you can set:

Changing the values of any of the properties of the transform of a node will affect the node and all its children. If you

change the transform.position property of a node, the node and all its children will move in 3D space. If you change

the transform.scale property of a node, the size and relative spacing of the node and all its children will change

proportionately. If you change either the transform.rotation or the transform.axisAngle property of a node, the

node and all its children will rotate in 3D space. For more information on these two properties see “Setting the rotation

of a node” on page 208.

The frame of reference for a transform

A transform defines the position, scale and rotation of a node in relative to the node's parent. Often the parent of a

node will be the group("World"). If this is the case, then the node.transform.position will be identical to the

node.worldPosition.

Get-only properties

A transform has three properties whose value you can get, but which you cannot set directly. These are:

• xAxis

• yAxis

• zAxis

These properties are all unit-length direction vectors, and they are all perpendicular to each other, according to the

right-hand rule (see “3D space” on page 22). Their values will change when the rotation or axisAngle properties are

changed.

Property name Format

position position vector

scale vector

rotation vector

axisAngle [directionVector, angleOfRotationInDegrees]

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bed.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b45fe4e6b011d55854fa1-7ff1.html

205ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Setting a node's position

You can change the position of a node in the following ways:

• Set the node.worldPosition property to a position vector representing an absolute position in world space

• Set the node.transform.position property to a position in the node's parent's frame of reference

• Use node.translate() to move the node a given distance in a given direction from its current location, in terms

of a chosen frame of reference

• Use node.transform.translate() to move the node a given distance in a given direction from its current

location, in terms the node's parent's frame of reference

• Modify the transform of one of the node's parents and the node will automatically move with its parent. If you

change the parent's .scale, then the visible dimensions of the child node will also change.

• Change the node's parent while preserving the node's transform

You can find more details on using the translate() command for nodes and transforms at “Translation” on

page 206. For details on parent-child relationships, see “Node hierarchy” on page 91.

This section explains how to set the worldPosition and transform.position properties directly.

WorldPosition

You can move a node to an absolute position in the 3D world space by setting its .worldPosition property. For

example, this command moves the model “car” of 3D member “world” to the absolute position in the 3D world space:

member("world").model("car").worldPosition = vector(31, 287, -7)

GetWorldTransform()

You can use the command getWorldTransform() to obtain a transform whose properties describe the position, scale

and rotation of the node in terms of the 3D world itself. If you alter any of the properties of the transform you obtain,

you will not affect the node in any way: the transform returned by getWorldTransform() is not attached to any node.

The value of node.getWorldTransform().position will be identical to node.worldPosition.You can set the

worldPosition property, using a position in world space, but there is no shortcut for setting scale or rotation in the

frame of reference of world space.

Node.transform.position

Setting the value of node.transform.position will place the node in a position relative to its parent's frame of

reference.

member("world").model("car").transform.position = vector(31, 287, -7)

Multiplying by a transform to convert between frames of reference

You can convert a node.transform.position to a node.worldPosition by multiplying it by the transform

obtained using node.parent.getWorldTransform().

In this code example, the model("Blue") is made the child of the group("Frame of Reference"). The model's

worldPosition and its transform.position are different because the group("Frame of Reference") is not

placed at the center of the world.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bed.html

206ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

 vGroup = member("3D").group("Frame of Reference")
 vModel = member("3D").model("Blue")
 put vModel.worldPosition
 -- vector(-27.2652, -72.2760, -86.8480)
 vGroup.addChild(vModel, #preserveWorld)
 put vModel.transform.position
 -- vector(44.7348, -79.2760, -25.8480)

To convert the model's transform.position into a position within the frame of reference of the world, you can

multiply it by the transform of its parent:

 vTransform = vModel.parent.getWorldTransform()
 put vTransform * vModel.transform.position
 -- vector(-27.2652, -72.2760, -86.8480)

To convert from world space to the frame of reference of the model's parent, you can use the inverse() of the

transform returned by getWorldTransform().

 vInverse = vTransform.inverse()
 put vInverse * vModel.worldPosition
 -- vector(44.7348, -79.2760, -25.8480)

For more details on transform mathematics, see “Transforms methods” on page 372.

Translation

To move a node a certain distance in a particular direction, you can use the translate command. This accepts two types

of information:

1 An indication of the direction and distance of the movement.

2 An indication of the frame of reference for the movement (defined by a node or a symbol representing a node).

You can express the direction and distance of the movement in one of two ways:

• As three separate floating point numbers, representing the distance to move along the x-, y- and z-axes.

• A vector.

The indication of the frame of reference is optional. If you omit it, the frame of reference is considered to be that of the

node that you are moving.

node.translate(xIncrement, yIncrement, zIncrement {, relativeTo})
node.translate(translateVector {, relativeTo})

Note: You can also apply the translate() command to the transform of a node. However, a transform has no parent,

so the translation can only be applied within its own frame of reference. Providing a frame of reference parameter when

using translate() with a transform will provoke a script error.

aTransform.translate(xIncrement, yIncrement, zIncrement)
aTransform.translate(translateVector)

Orientation and scale of the frame of reference

The distance and direction of a translation is affected by the orientation and scale of the node that acts as the frame of

reference.

To see the effect of the orientation and scale of the frame of reference, download the RelativeMotion.dir and launch it.

This movie creates two box models: a Parent model (which appears as a wire frame) and a Child model. It executes the

same translate() action 6 times, using 6 different terms to define different frames of reference.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf2.html
http://www.adobe.com/support/director/examples/RelativeMotion.dir

207ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Each time the translate() action is executed, the color of the Child model is changed. The image below shows where

the Child model ends up after each translate() action.

Changing the node that acts as the frame of reference affects the distance and direction of a translate() action.

Note the following points:

• The direction of the translation depends on the orientation of the reference node. In the example, the Child model's

parent is aligned with the group("World"), but the camera is rotated 45° around the y-axis and Child model itself

is rotated 60° around the y-axis.

As a result, the translations illustrated in orange (relative to the parent) and green (relative to the world) both occur

along the world's x-axis (the red line), but the other translations occur at different angles.

• The distance traveled depends on the scale of the node that acts as the frame of reference. The Parent model is scaled

by a factor of 0.5, and its scale also affects the Child model. The group("World") is scaled by a factor of 1.0, and

the camera is scaled by a factor of sqrt(2.0).

As a result, the translations shown in orange (relative to the parent) and blue (relative to the Child model itself) are

half the length of the translation relative to the world (shown in green). The translation relative to the camera

(shown in red) is about 1.4 times longer than the translation relative to the world.

• Using a symbol shortcut, such as #self or #parent, has exactly the same effect as using an explicit reference to the

associated node. If you do not include any reference to a node, then the node that you are moving is chosen by

default as the frame of reference.

As you watch the movie, the positions of the dark blue and light blue boxes (using no reference and #self) are

identical, and the positions of the yellow and orange boxes (using #parent and model("Parent")) are also

identical.

Note: This example uses a camera that has been scaled by a factor other than 1.0. This is for the purposes of this

demonstration only. Generally, changing the scale of a camera will not be necessary.

208ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Setting the rotation of a node

A transform's rotation and axisAngle properties contain the same information in two different formats. If you

change the value of one of these properties, the other will update automatically. For example:

vTransform = member("3D").model(1).transform
put vTransform.rotation
 -- vector(164.0000, 29.0000, 71.0000)
put vTransform.axisAngle
 -- [vector(-0.7860, -0.6049, 0.1278), -150.6098]

If you change the axisAngle, the rotation will update.

vTransform.axisAngle = [randomVector(), random(3600) / 10.0]
put vTransform.axisAngle
 -- [vector(-0.9109, -0.0399, -0.4107), -23.0000]
put vTransform.rotation
 -- vector(20.9315, -0.8107, 9.4034)

If you change the rotation, the axisAngle will update.

vTransform.rotation = vector(21, -1, 9)
put vTransform.axisAngle
 -- [vector(-0.9177, -0.0289, -0.3962), -22.9211]

Note: In Director 11.5 and earlier, getting and then setting the .rotation property of a transform can lead to unexpected

results. If the absolute value of the y component of the rotation is between 90.0 and 270.0, the transform may end up

facing in a different direction from what you expect.

The workaround is to store a duplicate of the transform.rotation vector, and to use the duplicate rather than the

current value of transform.rotation vector to set any new values.

To see this issue and its resolution, download the yAxisRotationIssue.dir and launch it.

Unless you use a workaround, rotations where the y component is between 90.0° and 270.0° behave erratically

As you drag the sliders, the 3D model will rotate.

http://www.adobe.com/support/director/examples/yAxisRotationIssue.dir

209ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

If you drag the green y-component slider inside the zone with diagonal yellow warning stripes, the model will oscillate

unexpectedly. However, if you check the Use Workaround For Y-Axis Rotation Issue button, a code similar to the

following will be used:

property pBox -- pointer to the "Box" model
property pRotation -- duplicate of rotation vector
on beginSprite(me)
 v3DMember = sprite(me.spriteNum).member
 v3DMember.resetWorld()

 vResource = v3DMember.newModelResource("Box", #box)
 pBox = v3DMember.newModel("Box", vResource)
 -- WORKAROUND: Use a duplicate rotation vector
 pRotation = pBox.transform.rotation
end beginSprite
on SetRotation(me, aAxis, aAngle)
 -- WORKAROUND: Alter pRotation and not pBox.transform.rotation
 case aAxis of
 #x:
 pRotation.x = aAngle
 #y:
 pRotation.y = aAngle
 #z:
 pRotation.z = aAngle
 end case

 pBox.transform.rotation = pRotation
end SetRotation

This workaround will continue to work correctly in releases of Director subsequent to 11.5, where this issue has been

dealt with.

Note: In a transform.axisAngle where the angle is set to zero, the direction of the axis becomes arbitrary. If there is

no rotation, then it doesn't matter around which axis the non-rotation occurs.

If you set the angle of a transform.axisAngle to zero, then Director will reset the axis to vector(1.0, 0.0, 0.0

) by default.

vTransform.axisAngle = [randomVector(), random(3600) / 10.0]
put vTransform.axisAngle
 -- [vector(0.0282, -0.6930, 0.7204), -163.1000]
vTransform.axisAngle[2] = 0
put vTransform.axisAngle
 -- [vector(1.0000, 0.0000, 0.0000), 0.0000]

Rotate()

To rotate an object, you can use the rotate() command. Provide the following information with this command:

• A center of rotation. The object will maintain the same distance from this point as it rotates.

• An axis of rotation. The object will move in a plane perpendicular to this axis.

• An angle through which the object will turn.

• A frame of reference. (Optional) If this is omitted, the frame of reference is considered to be that of the node that

you are moving.

210ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Imagine that you want to tip a chair backwards. The center of rotation can be any point on the line between its two

back feet. The axis of rotation would be parallel to the line between its two back feet, and the angle can be anything up

to about 90°, after which its back will hit the floor. The frame of reference would be the chair itself, so you can use

#self, or leave the frame of reference blank.

Imagine that you want to swing the chair around you in a circle, in preparation for throwing it through a window. In

this case, the centre of rotation would be your center of gravity, the axis of rotation would be vertical, and the angle

would be something like 360°. You can consider yourself to be the temporary “parent” of the chair, as its movement is

defined by yours, so you can use #parent or model("me") as the frame of reference.

You can provide these four items of information in a number of different ways.

1 aNode.rotate(position, axis, angle {, relativeTo})

2 aNode.rotate(xAngle, yAngle, zAngle {, relativeTo})

3 aNode.rotate(rotationVector {, relativeTo})

Note: You can also apply the rotate() command to the transform of a node. However, a transform has no parent, so

the rotation can only be applied within its own frame of reference. Providing a frame of reference parameter when using

rotate() with a transform will provoke a script error.

transform.rotate(position, axis, angle)
transform.rotate(xAngle, yAngle, zAngle)
transform.rotate(rotationVector)

Three rotation angles or only one rotation angle? Read the following sections to know more.

Three rotation angles

If you use a rotation vector or three separate rotation angles, then the center of rotation and axis of rotation are defined

implicitly. Consider this example:

chairModel.rotate(17, 23, 41, irateEmployeeModel)

This means:

• Rotate chairModel 17° around the origin point of irateEmployeeModel in a plane perpendicular to

irateEmployeeModel's x-axis

• Then rotate chairModel 23° around the origin point of irateEmployeeModel in a plane perpendicular to

irateEmployeeModel's y-axis

• Finally rotate chairModel 41° around the origin point of irateEmployeeModel in a plane perpendicular to

irateEmployeeModel's z-axis

The end result of any sequence of rotations can be produced by one single rotation. The three separate rotations above

are equivalent to a single rotation of about 47° around the origin point of the irateEmployeeModel on a plane

perpendicular to an axis parallel to the vector(-0.1681, -0.5940, -0.7867) in the irateEmployeeModel's frame

of reference.

Tip: You can use axisAngle to discover the orientation of the axis and the angle of rotation of a node, in its own frame of

reference, after a rotation.

To see a demonstration of this concept, download RandomRotation.dir and launch it.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6b43.html
http://www.adobe.com/support/director/examples/RandomRotation.dir

211ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The yellow half-cone shows the initial position, the blue half-cone shows the final position

The RandomRotation.dir movie creates a yellow half-cone model and places it at the center of the world. Next, it

creates an invisible group named “Frame of Reference” and places it at a random position. Then it creates a random

rotation in the form of a vector:

vector(randomXAngle, randomYAngle, randomZAngle)

The red, green and blue half-cones show the positions of the yellow model after its rotation around the x-axis, the y-

axis and z-axis respectively. These models illustrate the intermediate steps that would be performed by the command:

yellowModel.rotate(xAngle, yAngle, zAngle, frameOfReference)

The blue model shows the final position after the rotation is complete.

Only one rotation angle

You can move the yellow model to occupy the same position as the blue model using a single rotation around a single

axis. You can use blueModel.transform.axisAngle to find out which axis and angle to use. For example:

vAxisAngle = blueModel.transform.axisAngle
put vAxisAngle
-- [vector(-0.1681, -0.5940, -0.7867), -46.6984]
vAxis = vAxisAngle[1]
vAngle = vAxisAngle[2]

The cyan cone half-cone represents the position of the missing half of the yellow cone, after it has been rotated using

the following command:

cyanModel.rotate(vector(0,0,0), vAxis, vAngle, frameOfReference)

The cyan model and the blue model together now form a single cone. This demonstration shows that the two rotation

commands lead to identical results.

You can click on the Animate Rotation button to see each step of these two commands played out, one after the other.

Using a group to help define a rotation

Groups are invisible. You can attach a group to any point of a model, as a child of the model, and then take advantage

of the group's transform properties to track how that point on the model moves through space.

To see an example of this in action, download the RotationDemo.dir and launch it.

http://www.adobe.com/support/director/examples/RotationDemo.dir

212ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The RotationDemo.dir movie demonstrates rotation around three different axes, using a group to help

A group is attached to the rear right corner of the box. To tip the box backwards, it is rotated around the group's

transform.zAxis. Because the group is a child of the box, its position relative to the box remains constant as the box

rotates. The group's transform.xAxis is used next, as the axis for a new rotation. Finally, the box is spun around a

vertical axis passing through the group's worldPosition.

Using pointAt() to rotate a node

To make a node rotate to face at a given point in space, you can use the pointAt command. Define a target using any

of the following techniques:

• node.pointAt(anotherNode)

• node.pointAt(worldPositionVector)

• node.pointAt(x, y, z)

To see a demonstration of all three techniques, download and launch the movie pointAt.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf7.html
http://www.adobe.com/support/director/examples/pointAt.dir

213ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

In pointAt.dir, a click on one of the models will turn the camera to point at that model

Note: pointAt() is similar to worldPosition in that it functions in world space. Unlike translate() or rotate(),

you cannot provide a frame of reference as a parameter to the pointAt() command.

You can use pointAt() with a node (model, group, camera, light), but you cannot use it with a transform. You will

encounter a script error if you attempt to it as a transform method.

Defining an upwards direction

Point at something with your index finger. Now stretch back your thumb so that it is at right-angles to your index

finger. You can rotate your wrist so that your thumb is pointing in almost any direction, while your index finger

continues to point at your target.

Imagine that your index finger is the zAxis of a node's transform, and that your thumb is the yAxis. By default, the

pointAt() command will use the node's zAxis to point at the target position, and will place the yAxis in a plane that

also passes through the world's y-axis. If you point vertically up or down, the node.transform.yAxis will be

perpendicular to the yAxis of the world, so there is an infinite number of directions in which the node's yAxis can point

and still be in the same plane as the world's yAxis. If this happens, Director will choose to align with the world's xAxis

instead. When the node becomes absolutely vertical, it may suddenly twist through 180°.

Note: This issue in known as Gimbal Lock. In the Apollo 11 space mission, which put the first men on the moon, the

astronauts had to override the on-board computer when the Lunar Module was pointing directly upwards for the landing.

Fortunately, the computer that you are using to run Director is much more powerful than theirs.

You can avoid this issue by using an additional parameter for the pointAt() command:

• node.pointAt(anotherNode, vectorUp)

• node.pointAt(worldPositionVector, vectorUp)

214ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• node.pointAt(x, y, z, vectorUp)

If this vectorUp parameter is not used, then the world's yAxis, vector(0, 1, 0), is used by default.

Note: You cannot get a node to point at itself, or to the worldPosition where it is currently located. If you do, an “Invalid

Point” script error will occur. Always ensure that the target of a pointAt() command is a distinct point elsewhere in

world space.

You can also provoke this “Invalid Point” script error by using the pointAt() method with a vectorUp parameter that

is parallel to the direction in which the node is to point.

The vectorUp.dir movie (see “Example” on page 214 below) provides solutions to both these issues.

Defining a node's pointAt direction

By default, a node will turn its zAxis to point in the direction of the chosen target. You can use pointAtOrientation to

define a different direction. You can also use this property to define which direction must point upwards when

pointAt() is used. Here is what the default value of pointAtOrientation looks like:

put member("3D").model(1).pointAtOrientation
-- [vector(0.0, 0.0, 1.0), vector(0.0, 1.0, 0.0)]

The first entry in the list indicates the direction that is used for pointing at the target (the node's zAxis by default). The

second entry indicates which direction will be used to align with the vectorUp direction.

Suppose you create a half-cone using the Cone primitive, and that you want to point its tip at a target and keep the

curved side facing upwards. The tip of the half-cone is along its yAxis, and the center of its curved surface may lie on

the model's xAxis. Here is code that will make such a model, and which will set its pointAtOrientation

appropriately:

v3Dmember = member("3D")
 vResource = v3DMember.newModelResource("HalfCone", #cylinder)
 vResource.topRadius = 0
 vResource.startAngle = 180
 vModel = v3DMember.newModel("HalfCone", vResource)
 vList = []
 vList.append(vector(0, 1, 0)) -- yAxis
 vList.append(vector(1, 0, 0)) -- xAxis
 vModel.pointAtOrientation = vList

Example

Download the vectorUp.dir and launch it.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bef.html
http://www.adobe.com/support/director/examples/3dExtruder.dirhttp://www.stage.adobe.com/support/director/examples/vectorUp.dir

215ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The vectorUp.dir movie demonstrates a solution to all the issues mentioned above

The vectorUp.dir movie uses a Movie Script called Point Node At as a wrapper for the pointAt() method. The global

PointNodeCarefullyAt() handler ensures that no script errors occur, and that the rotation of the node does not

suddenly switch when the node is asked to point vertically up or down.

However, one issue that requires a solution is Gimbal Lock. To see this issue, drag the mouse from left to right either

above or below the sphere. The model will turn to point at the mouse. As the mouse passes through the vertical, the

model will suddenly rotate 180°.

Note: Note the red zone above and below the sphere. The demo is programmed to make the HalfCone model snap to the

vertical when the mouse is in this area, if the Prevent Gimbal Lock button is not checked. This is to make it easier for you

to make the model jump to a vertical orientation at any time. This “snap to vertical” behavior is not a feature of the Point

Node At script.

To avoid this unexpected, sudden rotation, check the Prevent Gimbal Lock button. When this button is checked, the

behavior on the 3D sprite will prevent the HalfCone model from ever becoming absolutely vertical. Instead, it will

make the pointAt target move in a small circle around the vertical axis.

This feature is not included in the Point Node At script, because your needs may vary from project to project and the

Point Node At script is generic.

Here are the lines of code in the behavior on the 3D sprite that prevent the Gimbal Lock from occurring:

vLoc = the mouseLoc - sprite(1).left, [sprite(1).top]
 vWorldSpace = sprite(1).camera.spriteSpaceToWorldSpace(vLoc)
 if pPreventGimbalLock then
 -- Rotate in a small circle around the absolute vertical
 vXSquared = vWorldSpace.x * vWorldSpace.x
 vMinimum = 144.0 -- <HARD-CODED>
 if vXSquared < vMinimum then
 vWorldSpace.z = sqrt(vMinimum - vXSquared)
 end if
 end if

Note that this code takes a shortcut that relies on the knowledge that the HalfCone model is centered at vector(0,

0, 0). In your own projects, you may need to make adjustments for the x and z components, depending on the

worldPosition of the model that you are working with.

216ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Moving the camera

A 3D world with no movement is just a static image. Movement brings a 3D world alive. As far as movement is

concerned, there are four main elements in a 3D world:

• The sky or other background, which remains at a fixed distance from the camera

• The terrain and other objects that remain in fixed positions relative to the world

• Moveable objects, such as characters and vehicles

• The camera itself

The camera represents the user's eyes. A user who feels comfortable with the movements of your camera will become

immersed in the world that you have created. If the camera moves in unexpected ways or is difficult to control, the user

will feel alienated and may quickly lose interest in your creation.

This article helps you deal with the camera movements for your projects.

Camera control

Consider the following points while controlling the movement of the camera:

• “Choosing the appropriate movement for the 3D scenes” on page 216

• “Giving user the control of the movement” on page 216

• “Moving the viewpoint through space” on page 217.

• “Looking around from the current viewpoint” on page 217.

• “Controlling interactions between the camera and the world” on page 217

• “Providing feedback on the camera's current location and orientation” on page 218

Choosing the appropriate movement for the 3D scenes

Each type of scene requires a different technique for controlling movement of the camera. Here are some examples:

• To present a simple object, you may want to have the camera rotate around the object so that it can be seen from

any angle. See “Rotating around an object” on page 218.

• For a visit to a virtual art gallery, you may want to arrange a series of preset views of the key exhibits. See “Preset

Views” on page 218.

• To present the architecture of a virtual building, you may want to provide a pre-defined path that the visitor can

follow. See “Following a pre-defined path” on page 220.

• In a first-person action game, you may want the camera to be the eyes of the player. See “Steering with the mouse”

on page 221.

• For a role-playing game, you may want the camera to follow the player's character. See “Third-person camera” on

page 230 and “Making the camera move naturally” on page 236.

Giving user the control of the movement

Most users will have a mouse and a keyboard that they can use to control the movement of the camera. Some users

may have a joystick or a steering-wheel input. Therefore, you have to choose the most appropriate input control system

for the world that you have created.

217ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

A very simple camera movement may not provide any user control. The camera simply follows a pre-defined path

through the space. In this case, the user witnesses the world as a passenger. At the other extreme, the user may play the

pilot of a virtual helicopter or a stunt aircraft that is capable of moving in all three dimensions of space, and performing

loops, yaws and barrel rolls.

Therefore, there is no one-size-fits-all solution for controlling camera movements. Each project may require you to

design a different customized solution. Here are some examples:

Keyboard control of the camera

• Rotation around an object. See “Rotating around an object” on page 218.

• Forward movement and steering. See “Steering with the mouse” on page 221.

• Customization of camera control keys. See “Customizing control keys” on page 259.

Moving the viewpoint through space

• Following a path. See “Following a pre-defined path” on page 220.

• Warping to a new location. See “Preset Views” on page 218 and “MiniMap” on page 233.

• Moving in a straight line from the current location to a new location. See “Moving to a given location” on page 225

• Finding a path from the current position to a different position. See “Finding a path” on page 229.

Mouse control of the camera

• Select a view point by clicking on its name in a list. See “Preset Views” on page 218.

• Click on an object in the scene to jump to the best position for viewing that object. See “Preset Views” on page 218

and “Picking” on page 242.

• Steer by pointing the mouse in the direction you want to turn. See “Steering with the mouse” on page 221.

• Use the mouse to look around from the current camera viewpoint. See “Looking around” on page 222.

• Click on the scene to define where the camera is supposed to move to. See “Moving to a given location” on page 225.

• Click on a location in a mini-map to jump to that spot. See “MiniMap” on page 233

Looking around from the current viewpoint

• Use the mouse to look around from the current camera viewpoint. See “Looking around” on page 222.

• Rotate around the object so that it can be seen from any angle. See “Rotating around an object” on page 218.

Controlling interactions between the camera and the world

• Creating an elastic distance between the player's avatar and the camera following it, based on the avatar's speed. See

“Making the camera move naturally” on page 236.

• Avoiding collisions between the camera and the scenery, and avoiding the edge of the world. See “Not walking

through objects” on page 222.

• Sliding along a wall if the user tries to move forward when blocked by an obstacle. See “Sliding along a wall” on

page 237.

• Keeping the same distance from the ground. See “Hugging Terrain” on page 238.

• Moving to a different part of the 3D environment. See “Moving to a new zone” on page 240.

218ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Providing feedback on the camera's current location and orientation

• Displaying the current location on a minimap. See “MiniMap” on page 233.

• Displaying an overview. See “Preset Views” on page 218.

Rotating around an object

For a straightforward product presentation, you may simply want the user to be able to rotate the camera around an

object. This type of movement can be done with a generic behavior. To see an example of how to use either the mouse

or the keyboard to rotate the camera around an object, download and launch the movie SimpleRotate.dir.

The further you drag the mouse from the point where you clicked, the faster the camera will rotate.

This movie uses two behaviors. The Drag to Rotate Camera behavior uses the movements of the mouse to control the

rotation. The Move Camera Behavior uses the keyboard input from the arrow keys to control the rotation.

Preset Views

To demonstrate the architecture of a building, or as part of a guided tour of a virtual museum, you may want to move

the camera to a preset viewing position.

To see a demonstration of this, download and launch the movie PresetViews.dir.

http://www.adobe.com/support/director/examples/SimpleRotate.dir
http://www.adobe.com/support/director/examples/PresetViews.dir

219ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Click on the view names or on the colored squares on the floor plane to jump to a preset view.

In the PresetViews.dir movie, the data for the views is stored inside a property list. The property list contains

information about the position and rotation of the camera transform, and about the camera's projectionAngle.

Here's an extract that will create such a list as the pViewList property of a behavior:

property pCamera
property pViewList
on beginSprite(me)
 pCamera = sprite(me.spriteNum).camera
 pViewList = [:]
 vViewData = [:]
 vViewData[#position] = vector(270, 625, 820)
 vViewData[#rotation] = vector(22.5, 0, -90)
 vViewData[#projectionAngle] = 35
 pViewList[#overview] = vViewData
 -- etc
end beginSprite

To apply a given preset view, the appropriate sub-list of pViewList is selected. The information contained in that

sublist is then applied to the camera.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bff.html

220ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on SetView(me, aFloorName) --------------------------------------
 -- INPUT: <aFloorName> should be one of the symbols used as a
 -- property name in pViewList
 -- ACTION: Sets the transform and projectionAngle of the
 -- camera to recreate the preset view

 vViewData = pViewList[aFloorName]

 vPosition = vViewData.position
 vRotation = vViewData.rotation
 vProjectionAngle = vViewData.projectionAngle

 vTransform = transform()
 vTransform.position = vPosition
 vTransform.rotation = vRotation

 pCamera.transform = vTransform
 pCamera.projectionAngle = vProjectionAngle
end SetView

If you click inside one of the rooms which has a preset view associated with it, the SetView() handler will be called. For

more details on how this is achieved, see “Picking” on page 242.

Following a pre-defined path

To create a fly-through of a scene, you may want to provide a pre-defined path that the visitor can follow. To see a

demonstration, download and launch the movie FixedPath.dir.

The camera follows a track

The monorail track for the FixedPath.dir movie was created in 3ds Max. The track represents a spline which passes

through a number of points in space. The designer exported the position of each of the points in the spline from 3ds

Max as a text file. The beginning of the file looks like this:

http://www.adobe.com/support/director/examples/FixedPath.dir

221ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

200
0 0 0
0.23439370698124551 0 2.8052391247018487
0.79709400427770416 0 5.5735889387208921
1.4100892089568533 0 8.3189680738959133
2.2041555452853721 0 11.022120463300187
3.13483108877689 0 13.679583825865805
4.2009292738630357 0 16.286207871349418
5.38…

In other words, the file starts with the number of points, then a series of lines that begin with two TAB characters, then

the x component, the y component (always 0), and the z component of a vector position in world space.

Tip: In this movie, the camera is attached as a child to the Train model, and the train model follows the track. This helps

you to visualize the spline in 3D space, and the movement of a node through space.

If you are creating a pre-defined fly-through, you do not need to show either a visible track or a visible parent for the

camera. You can simply move the camera between the points of an invisible spline.

The distances between adjacent points on the spline are not always equal, but the train needs to travel at a constant

speed. The Train behavior uses the data from the text file to create four separate lists:

property plPoints -- list of points on track
property plVectors -- list of vectors that join the dots in
-- plPoints
property plLengths -- list of the lengths of the plVectors
property plTotals -- sorted list of cumulated lengths in
-- plLengths

On each enterFrame, the behavior determines how many milliseconds have elapsed since the train started, and

calculates how far the train will have travelled in that time, as vDistance. The behavior then uses

plTotals.findPosNear(vDistance) to determine which segment of the spline the train is currently on. It works out

how far along that segment the train is, and what direction it is currently traveling in. This gives the current position

and rotation for the Train model. Because it is a child of the Train model, the worldPosition and rotation of the

camera is updated automatically to keep it in the same position relative to the train.

You can use the Train behavior as the starting point for your own fly-through projects.

You can find a demonstration of a similar technique at “Following a path” on page 267.

Steering with the mouse

There are several ways to control the camera with the mouse. This article explains a system based on the mouse

position over the sprite. You can find a different solution at “Moving to a given location” on page 225.

Three in one

The Steer Camera With Mouse script deals with three different features of a walkthrough camera:

• Forward and backward movement, and steering.

• Looking around from a stationary position. For more information, see “Looking around” on page 222.

• Collision detection. For more details, see “Not walking through objects” on page 222.

222ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Light on the wrist

In an action-packed game, the player will be moving around the world for much of the time. As the game designer,

you will want to limit the amount of wrist movement that the player will need to make. The solution demonstrated

here requires no pressure on the mouse button, and fluid movements of the hand.

In the center of the 3D sprite, both horizontally and vertically, there is a dead zone. If the mouse pointer is in near the

center of the 3D sprite, the camera will not move. If the user moves the pointer more than 10 pixels to the left or right

of center, the camera will start to turn. The further the pointer is from the center, on a horizontal axis, the faster the

camera will turn.

If the user moves the pointer upwards, the camera will start to move forward. The further up, the faster the camera will

move. The same will occur if the user moves the pointer downwards to make the camera move backwards.

Move later

A band 20 pixels wide in the center of the sprite (110 - 130 pixels from the top of the sprite) is a dead zone for forward

and backward movement. Here is a handler similar to one that is used in the movie. It will move the camera forward

or backwards along its own zAxis. The further the mouse pointer is from the center of the sprite, the faster the camera

will move. This handler is called on every frame, after mTurn().

on mMove(aCamera)
 vLocV = the mouseV

 vPixels = vLocV - 110
 if vPixels > 0 then
 vPixels = vLocV - 130
 if vPixels < 0 then
 -- The mouse is inside the dead zone
 exit
 end if
 end if

 -- Scale down movement to a reasonable speed
 vUnits = vPixels * 0.1

 aCamera.translate(0, 0, vUnits, #self)
end mMove

Looking around

In your 3D application, you may want the user to be able to stop at a chosen place and simply look around. You can

use either the arrow keys or the mouse to provide a look-around feature.

Not walking through objects

You want the user to be able to walk through the world that you have created, but not to walk through objects. Moving

a camera around a 3D space is not difficult. However, the illusion of the solidity of the 3D models will be shattered if

the camera can move through walls.

Director provides a number of ways of detecting collisions with models. Depending on the circumstances, collision

detection can require intense usage of the computer's processor. To prevent your end-user's computer overheating, or

your movie playing back slowly, you will want to choose the least processor-intensive solution for each case.

223ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

modelsUnderRay()

The modelsUnderRay() command works fastest when it is used to detect only a small number of low-polygon models.

The concept

Imagine a hypothetical cylinder around the camera. Imagine that, each time the camera moves, the behavior needed

to check for a possible collision between the cylinder and all solid objects in the scene. It would be time-consuming to

check for an intersection between all the faces of the cylinder and all the faces of the models within range. Such a check

would need to occur on every frame.

A simple solution is to create a barrier around each model. The barrier is a ribbon at a fixed distance from all the

models. It represents the closest point that the center of this hypothetical cylinder can get to any model, before the

cylinder starts to intersect with the model. All we now need to do is calculate whether the camera is about to touch the

barrier. Each time the camera moves, it needs to make only one calculation: how far away is the barrier from the

camera in the direction in which the camera is traveling?

To see how the barriers are created, see “2D barriers” on page 288.

One calculation per frame

The Steer Camera with Mouse behavior performs one modelsUnderRay() calculation on every frame, if the camera

is moving. It sends out one ray in the direction in which it is moving. The modelsUnderRay() function returns a list

with a number of properties, including #distance: the distance in world units from the origin point of the ray to

where the ray intersects with a model.

Here is code similar to that used in the Steer Camera with Mouse behavior:

on mAttemptToMove(aCameraParent, aBarrierModelList, aDistance)
 vTransform = aCameraParent.getWorldTransform()
 vPosition = vTransform.position
 vAxis = -vTransform.zAxis -- camera moves down its zAxis
 -- Limit the scope of the modelsUnderRay() calculation
 vRayInfo = [:]
 vRayInfo[#maxNumberOfModels] = 1
 vRayInfo[#levelOfDetail] = #detailed
 vRayInfo[#modelList] = aBarrierModelList

 -- Use a single modelsUnderRay() calculation
 vRayData = p3DMember.modelsUnderRay(vPosition, vAxis, pRayInfo)

 if vRayData.count then
 -- There is a barrier in the way
 vImpactData = vRayData[1]

 -- Do not let aCameraParent move right up against the
 -- barrier, otherwise rounding errors may put it just beyond
 -- the barrier, and subsequent rays will fail to detect the
 -- barrier.
 vDistance = vImpactData.distance - 0.1

 if aDistance > vDistance then
 -- Stop before the barrier
 aDistance = vDistance
 end if
 end if
 aCameraParent.translate(0, 0, aDistance, #self)
end mAttemptToMove

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html

224ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Controlling forward movement

This technique will work regardless of how the movement of the camera's parent node is controlled. See “Steering with

the mouse” on page 221 for more details.

Advantages of using a parent node

This technique relies on the camera being attached as a child to a parent node. The parent node is moved around and

the camera follows. Why not just move the camera around on its own?

Here are the reasons:

• The worldPosition of the parent node determines the point of departure of the ray used by modelsUnderRay().

This needs to be at the same height as the barrier models. It is often simpler to place the barriers with their center

at y = 0, even though the camera may need to be at a different height.

• The parent node's zAxis can always face forward, and remain perpendicular to the world's yAxis. You can tilt and

swivel the camera and change its height independently of its movement over the terrain. See “Looking around” on

page 222 for more details.

Steering with the keyboard

You may prefer to use the keyboard to move around inside the 3D world. Two common arrangements are to use the

arrow keys with the right hand or to use the W, A, S and D keys with the left hand.

To experiment with using the keyboard to move around inside a 3D scene, download and launch the movie

KeyboardControl.dir.

Use the arrow keys with your right hand or the WASD keys with your left hand to control the camera.

The KeyboardControl.dir movie contains a parent script called Steer With Keyboard. This script uses the keyPressed()

function once per frame to determine whether the user is pressing certain keys. If so, it moves the parent node of the

camera.

Turning

Here is a simple handler which checks whether any of the keys associated with turning have been pressed. If so, it

rotates a node called aCameraParent around its own yAxis. For this to work correctly, the yAxis of aCameraParent

must be aligned with the up axis of the world. You can find a similar handler in the Steer With Keyboard script in the

KeyboardControl.dir movie.

http://www.adobe.com/support/director/examples/KeyboardControl.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8f.html

225ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on mTurn(aCameraParent)
 vLeft = keyPressed("a") or keyPressed(123) -- left arrow
 vRight = keyPressed("d") or keyPressed(124) -- right arrow
 if vLeft = vRight then
 -- No keys pressed, or two keys cancel each other out
 exit
 end if
 if vLeft then
 aCameraParent.rotate(0, 1, 0, #self)
 else
 aCameraParent.rotate(0, -1, 0, #self)
 end if
end mTurn

Moving

Here is a simple handler which checks whether any of the keys associated with moving forward and backwards have

been pressed. If so, it moves a node called aCameraParent along its own zAxis. You can find a similar handler in the

Steer With Keyboard script in the KeyboardControl.dir movie.

on mMove(aCameraParent)
 vForwards = keyPressed("w") or keyPressed(126) -- up arrow
 vBackwards = keyPressed("s") or keyPressed(125) -- down arrow
 if vForwards = vBackwards then
 -- No keys pressed, or two keys cancel each other out
 exit
 end if
if vForwards then
 aCameraParent.translate(0, 0, -1, #self)
 else
 aCameraParent.translate(0, 0, 1, #self)
 end if
end mMove

Collision Detection

The Steer With Keyboard script is designed to act as the ancestor for a behavior on a 3D sprite. The Key and Click

Setup script creates the models used in the world, and prepares the data that will be required by the Steer With

Keyboard. It uses a similar technique for collision detection as the one described in “Not walking through objects” on

page 222.

Collision detection is performed once per frame, but only if the user is pressing one of the keys associated with forward

or backward movements.

Click and go

The KeyboardControl.dir movie also demonstrates a technique where you click on the ground to move the camera to

that point. For more details, see “Moving to a given location” on page 225.

Moving to a given location

You may want to allow the users of your 3D application to click anywhere in the scene, and have the first-person

camera move automatically to that point. To experiment with this technique, download and launch the movie

KeyboardControl.dir.

http://www.adobe.com/support/director/examples/KeyboardControl.dir

226ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The click-to-go feature requires several different scripts to function:

• An instance of the Click To Go parent script is added to the userData list of the “Ground” plane, and it receives a

mouseUp() call from the Pick Action behavior.

• The Pick Action behavior is attached to the 3D sprite. It detects when the user clicks on the 3D sprite, and forwards

mouse events to the model that was clicked. For more details on how this works, see “Picking” on page 242.

• An instance of the Interpolate parent script is used to move the parent node of the camera. For more details, see

“Interpolation” on page 264.

Click to go

The user can click the horizontal “Ground” plane model to define a target point for the camera to move to. In the

KeyboardControl.dir movie, the parent node for the camera is not in the same plane as the ground. The Click To Go

behavior does not move the parent node to the point that the user clicked on; it moves it to a point that is on a vertical

line through the click point.

Here is a handler that sets two properties, pStart and pEnd, to the current position and the target position of the

parent node of the camera:

property pStart -- worldPosition of the parent of the camera
-- when the user clicks
property pEnd -- worldPosition at the same height as the parent
-- of the camera, above where the user clicked
on mouseUp(me)
 vSprite = sprite(me.spriteNum)
 vCamera = vSprite.camera
 vGround = vSprite.member.model("Ground")
 vSpriteLoc = the mouseLoc - [vSprite.left, vSprite.top]

 -- Determine if the user clicked on the ground
 vRayInfo = [:]
 vRayInfo[#maxNumberOfModels] = 1
 vRayInfo[#levelOfDetail] = #detailed
 vRayInfo[#modelList] = [vGround]

 vRayData = vCamera.modelsUnderLoc(vSpriteLoc, vRayInfo)
 if not vRayData.count() then
 -- The user did not click on the ground
 exit
 end if

 -- Get start position and put target position at same height
 pStart = vCamera.parent.worldPosition
 pEnd = vRayData[1].isectPosition -- worldPosition of click
 pEnd.y = pStart.y

 me.mAttemptToMoveToClickPoint() -- (see explanation below)
end mouseUp

In the KeyboardControl.dir movie, the functionality of the handler above is treated in two different places. The

creation of the vRayData list occurs in the Pick Action behavior, and the resulting list is sent to the mouseUp() handler

of the Click To Go behavior, which executes the last four lines.

http://www.adobe.com/support/director/examples/KeyboardControl.dir

227ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Jumping directly to the target position

In some cases, you may want to jump directly to the target position at pEnd. In such a case, use the following command

instead of me.mAttemptToMoveToClickPoint():

vCamera.parent.worldPosition = pEnd

Attempting to move

In some cases, you will want the camera to move smoothly from the current position to the new position, without

passing through any solid objects on the way. The first step, then, is to check if there are any barriers in the way.

The following are three possible cases:

• A barrier does not exist between the current position and the target position.

• The click is behind a barrier, in a position that the camera cannot reach.

• The click is on the far side of a solid object. The camera will have to move around the object in order to get to the

target position.

 These cases are illustrated in the following screenshots:

The target may be in open space (left), inaccessible (middle) or may require a detour around a solid object (right)

How does the Click To Go behavior distinguish between these three cases, and what does it do in each case?

Here is the mAttemptToMoveToClickPoint() method:

228ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on mAttemptToMoveToClickPoint(me)
 -- Send a ray from pStart to pEnd looking for a barrier
 vImpact1 = me.mFindBarrier() -- 0 | [#isectPosition: <vector>]
 if not vImpact1 then
 -- There is no barrier in the way: move there directly
 return me.mStartMovingTowards(pEnd)
 end if

 -- If we get here, then the first ray hit a barrier. Send a
 -- second ray back from the target pEnd point towards pStart
 vImpact2 = me.mSendRayBack() -- 0 | [#isectPosition: <vector>]
 if not vImpact2 then
 -- The return ray did not hit anything, so the target
 -- position is inaccessible behind the barrier. Move as far
 -- as the barrier.
 return me.mStartMovingTowards(vImpact1.isectPosition)
 end if

 -- If we get here, then the return ray also hit a barrier. This
 -- suggests that there may be a path around the obstacle.
 -- Use a pathfinding technique.
 me.mFindWayAround(vImpact1, vImpact2)
end mAttemptToMoveToClickPoint

The mFindBarrier() and mSendRayBack() handlers work in similar ways. These handlers:

• Send a ray between the pStart and pEnd positions.

• Determine the distance to the nearest intersection point with a barrier.

• Compare this distance with the distance between the pStart and pEnd points.

They return either 0 (to indicate that there is no intervening barrier), or an intersection property list with the format:

[#model: <model>, #position: <vector>, ...]

They use a similar technique to the one used in the mouseUp() handler above.

Moving towards the target point

When the user releases the mouse, the camera starts to move towards the target position. If the user clicked in an

inaccessible space behind a barrier, the movement will stop at the barrier.

The movement is launched by the mStartMovingTowards() handler. The movement takes some time. It is an

asynchronous process. You can perform other actions while the movement is occurring. You can interrupt the

movement by clicking a second time on the “Ground” model or by pressing on one of the camera control keys.

The movement is animated in two parts. First, the camera turns to face the target position, and then it moves towards

the target position in a straight line. The two animations are controlled by two different instances of the same

Interpolation parent script.

To use the Interpolation script, call its new handler, in the following way:

vInstance = script("Interpolation").new(aPropertyList)

Use the parameter aPropertyList as a property list with the following properties and values:

#object The 3D node to move, or the transform of the node to move.

#end Transform representing the end position, rotation and scale of the node.

#duration Duration of the movement in milliseconds.

229ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

#easing #none | #easeIn | #easeOut | #easeBoth

#callback Behavior or script instance to call back when the movement is complete.

#handler Symbol handler name to call when the movement is complete.

The #easing property in the parameter list decides whether the movement starts and ends abruptly, or whether it

starts slowly, accelerate, and then slow down to a gentle stop. If a gradual start or finish is required, it uses a sine curve

to ramp the speed.

The new instance of the Interpolation script places a pointer to itself on the actorList. It, therefore, receives a

#stepFrame event once per frame, and uses this to control the movement of the camera's parent node.

On every frame, it determines how many milliseconds have elapsed since the start of the movement, and uses this to

calculate how far the parent node will have rotated or moved forward. The script instance stores the initial and final

transform for the movement in the pStartTransform and pEndTransform properties. It stores a pointer to the

transform of the node that it is moving as pObject. The key lines in the Interpolation script are:

vTransform = pStartTransform.interpolate(pEndTransform, vPercent)
pObject.position = vTransform.position
pObject.rotation = vTransform.rotation
pObject.scale = vTransform.scale

For more details on interpolating between two transforms, see the interpolate() function.

Finding a path

In the KeyboardControl.dir movie, you can click in an empty space behind a solid object. The camera can move to the

target position, but it cannot not travel in a straight line to get there. Each of your projects will use a different map, so

you will need to use a customized path-finding technique. This movie does not demonstrate any path-finding

techniques. Instead, it simply has a stub parent script called “Custom PathFinder”, which simply shows an alert.

The KeyboardControl.dir movie will not automatically find a path around an obstacle.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79c1.html

230ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

For more information on path-finding techniques to use in your projects, look up the A* algorithm by clicking the

following links:

• Google search

• Wikipedia

• Lingo implementation

Third-person camera

In a 3D scene where the camera follows a user-controlled avatar, two levels of collision detection are required. Neither

the avatar nor the camera must pass through any solid objects. If the camera moves through a wall, or even moves too

close to it, the surface of the wall will appear to tear. The illusion of solidity will be lost.

To animate a third-person camera that follows an avatar, you will need to:

• Control the movement of the avatar in 3D space.

• Control the movement of the camera relative to the avatar.

In “Not walking through objects” on page 222, you learn how to simulate a cylindrical space around a 3D node, to

prevent the node itself from colliding with walls. This concept is used here to create a zone around the avatar. If the

camera is on the surface of the same cylinder then it will not pass through any walls either.

In “Steering with the keyboard” on page 224, you learn how to move a node around a 3D space. In this article, the same

technique is used to move an object representing the user's avatar. The movement of the camera is treated as a second step.

The concept

A third-person camera normally follows an avatar from behind. If the avatar always moves straight forwards, the

camera can simply move forward with the avatar. You can safely assume that the space between the avatar and the

camera is clear of obstacles. The situation is not so simple if the avatar turns.

Imagine that the user steers the avatar into a corner. The avatar cannot move any further forward. To move elsewhere,

the user first has to turn the avatar around to face away from the corner. To get behind the avatar if it turns, the camera

must move into the space between the avatar and wall.

Imagine that the avatar is now standing with its back against the corner. There is no space between the imaginary

cylinder that surround the avatar and the wall. As a result, the camera will have to move in towards the avatar until it

is on the surface of the imaginary cylinder.

The distance that the camera lags behind the avatar depends on the relative position of walls

http://www.google.com/search?q=a+star+algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://www.xdtech.net/dev/astar.dir

231ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

When the avatar moves away, the camera can stay in the same position until there is enough space between it and the

avatar for it to start following the avatar again.

To experiment with this download the movie FollowCamera.dir and launch it.

Rotate the camera to see how it moves closer to the avatar if there is a wall behind it

Placing a script instance on a node's userData list

The code that determines the position of the camera relative to the avatar is contained in the Third-Person Camera

script. An instance of the script is added to the camera's userData list, so that any script that has access to the camera

object itself can call the Third-Person Camera instance.

Required information

The Third-Person Camera script requires the following information:

• The 3D member (or the sprite which contains the 3D member). This information is required in order to send

modelsUnderRay() calls to detect barriers.

• A list of models used for collision detection.

• The radius of the imaginary collision cylinder around the avatar model.

• The maximum distance that the camera can lag behind the avatar.

• The camera to use to follow the avatar, if a 3D member or sprite has several cameras

The node that the camera is to follow is assumed to be the camera's parent.

Action

Each time the avatar model moves, the Follow_Update() handler in the Third-Person Camera script performs these

actions:

• Send a ray backwards from the avatar's current position.

• Determine the distance along this ray to the nearest barrier model.

• Add the radius of the imaginary collision cylinder to this distance, to get the distance to the solid object behind the

barrier.

• Decrease this distance, if necessary, to the maximum distance between the avatar and the camera.

• Move the camera the appropriate distance along the same line as the ray.

http://www.adobe.com/support/director/examples/FollowCamera.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bee.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html

232ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The camera is now behind the camera at the optimal distance, and will not collide with any walls.

Sample code

Here's a simplified version of the Third-Person Camera script:

-- pointer to the 3D member
property p3DMember
-- pointer to the camera object that is
-- controlled by this instance. This
-- instance is added to pCamera.userData
property pCamera
-- radius of cylinder around the parent
-- node = minimum distance of pCamera from
-- parent
property pRadius
-- maximum distance of pCamera from parent
property pMaxDistance
-- [#maxNumberOfModels: 1,
-- #levelOfDetail: #detailed
-- #modelList: <list of models>]
property pRayInfo
-- pointer to the parent of pCamera = the
-- node that pCamera will follow
property pParent
-- initial transform of pCamera,
-- representing its vertical position at
-- the center of the cylinder surrounding
-- the parent node.
property pTransform
on new(me, a3DMember, aRadius, aMaxDistance, aBarrierList)
 p3Dmember = a3DMember
 pRadius = aRadius
 pMaxDistance = aMaxDistance

 pRayInfo = [:]
 pRayInfo[#maxNumberOfModels] = 1
 pRayInfo[#levelOfDetail] = #detailed
 pRayInfo[#modelList] = aBarrierList

 pCamera = p3DMember.camera(1)
 pParent = pCamera.parent
 pTransform = pCamera.transform.duplicate()

 (pCamera.userData)[#followCamera] = me
end new

233ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on Follow_Update(me)
 vTransform = pParent.getWorldTransform()
 vPosition = vTransform.position
 vZAxis = vTransform.zAxis

 vRayData = p3DMember.modelsUnderRay(vPosition, vZAxis, pRayInfo)

 if not vRayData.count then
 vDistance = pMaxDistance

 else
 vImpactData = vRayData[1]
 vDistance = vImpactData.distance + pRadius
 vDistance = min(vDistance, pMaxDistance)
 end if

 pCamera.transform = pTransform.duplicate()
 pCamera.translate(vZAxis * vDistance, #world)
end Follow_Update

Note: You can use a third-person camera to follow any character, including characters that are not controlled by the user.

The camera will follow whichever node you set it to follow. You will simply have to call the Follow_Update() handler

each time the nod moves.

MiniMap

You can use a secondary camera to create a minimap of your 3D world. If you place a camera directly overhead, facing

downwards, it will automatically create a bird's view of the world. You can work with this view in several different ways.

For example:

• As an insert in the main 3D sprite.

• As an alternative view in the main 3D sprite, that the user can switch to.

• As the main view in a second 3D sprite that displays the same 3D world.

Note: Using a camera to display a minimap as an insert creates an opaque area within the main sprite. You may prefer

to use a semi-transparent overlay to create your map. See “Overlays and backdrops” on page 47 for more information.

You can also choose between different ways of handling the movements of the minimap camera with respect to the

user's avatar:

• The minimap camera can be a child of the avatar. In this case, the avatar will always appear in the center of the

minimap, and the view in the minimap will always rotate so that the avatar's view looking towards the top of the map.

• The minimap camera may be in a fixed position. In this case, the avatar will move around the visible space. You

may need an additional way of indicating the direction in which the avatar is facing.

To see an example of a minimap created as an insert with the camera in a fixed position, download the movie

MiniMap.dir and launch it. This demo allows you to click inside the minimap to move the avatar to a new position.

http://www.adobe.com/support/director/examples/MiniMap.dir

234ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

 A flattened cone (not visible in the main view) provides a direction arrow in the MiniMap view.

In the MiniMap.dir movie, the MiniMap behavior creates a second camera for the 3D sprite, and places it as in insert

in the top right corner. The bird's-eye camera is given an #orthographic projection, so that there is no distortion of

the view due to perspective. A cone-shaped primitive model serves to show the direction in which the avatar is looking.

This model is attached as a child to the avatar group, and placed above the avatar so that it will not be visible in the

main view.

Setting up the bird's-eye view camera

Here's a simplified version of the mCreateCamera() handler in the MiniMap behavior. It creates a new camera named

"MiniMap", and sets its properties so that it looks down on the world, then adds it as an insert to the top right corner

of the sprite.

on mCreateCamera(me, a3DSprite)
 vCamera = a3DSprite.member.newCamera("MiniMap")
 vCamera.projection = #orthogonal
 vCamera.orthoHeight = 1000
 vCamera.translate(0, 200, 0)
 vCamera.rotate(-90, 0, 0, #self)
 a3DSprite.addCamera(vCamera)
 vCamera.rect = rect(520, 0, 640, 240)
end mCreateCamera

Making objects visible from above

When you design the lighting for your 3D world, your main concern will be to make the scene look realistic from the

avatar's point of view. In the MiniMap view from above, the lighting may not be perfect. Depending on your project,

you can choose several solutions for this problem.

In the MiniMap.dir demo, two primitive models are used to create a “roof” for the two obstacle shapes. These models

are placed with their top surfaces flush with the obstacle shapes. However, because the MiniMap camera view is

orthographic, these models can be placed at any height, without affecting the view in the MiniMap camera. If you

comment out the last 4 lines in the beginSprite() handler of the MiniMap Setup behavior, you will see how this

affects the view in the MiniMap.

235ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

You will need to take care to make the world look good in the bird's-eye view

Jumping to a new position

Here's a mouseUp() handler that will move the group “Extraplanetary” to the position under the mouse in the

MiniMap insert view, if the user clicks inside the MiniMap.

on mouseUp(me)
 vSprite = sprite(me.spriteNum)
 vMember = vSprite.member
 vCamera = vMember.camera("MiniMap")
 vCamRect = vCamera.rect
 vSpriteLoc = the mouseLoc - [vSprite.left, vSprite.top]
 if not (vSpriteLoc.inside(vCamRect)) then
 exit
 end if
 vCameraLoc = vSpriteLoc - [vCamRect.left, vCamRect.top]
 vPosition = vCamera.spriteSpaceToWorldSpace(vCameraLoc)
 vPosition.y = 0

 vAvatar = vMember.group("Avatar_Parent")
 vAvatar.worldPosition = vPosition
end mouseUp

Note: This demo does not check whether the user clicked on a solid object. In your projects, it is recommended that you

add the appropriate code for this behavior.

236ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Rear-view mirror

You can use a very similar technique to create a rear-view mirror for a racing game. Simply create a secondary camera,

add it to the sprite, and set it as a child of the user's vehicle, pointing backwards. To get a wide enough view for the

rear-view mirror to be useful, you may wish to set the camera's projectionAngle property to a fairly large angle.

Making the camera move naturally

Your target audience is used to the camera movements used in the film industry. In the film industry, cameras are

heavy and cannot be accelerated quickly. In a virtual world, a camera has no weight, so you can move it instantaneously

from one point to another. However, your audience may see such movement as unnatural.

Both the avatar that you are following and the camera must start moving slowly, and increase in speed. If the avatar

accelerates quickly, it looks more natural if the camera lags behind initially, and then catches up when the avatar has

reached its top speed.

Instead of making the third-party camera follow at a fixed distance, you can vary the distance based on the changing

speed of the avatar. One simple way to do this is to use the interpolate() and interpolateTo() methods.

To see an example of the use of interpolateTo() to make the camera move more smoothly, download and launch

the movie ElasticCamera.dir.

Using interpolateTo() gives a natural lag between the movement of the avatar and the movement of the camera

You can find more details on this technique at “Interpolation” on page 264.

You can see an example of the transform.interpolate() method in the demo movie for “Moving to a given

location” on page 225. In this example, a click on the Ground model will make the camera accelerate then decelerate

as it arrives at its target position.

Other ideas

When navigating with the keyboard, you may prefer to ramp up to a maximum speed, and then continue to cruise at

that speed, and finally ramp down to a halt when the user releases the mouse.

With a third-person view, you can associate each of these stages with a different motion for the avatar. The avatar can

start with an “Idle” motion, then adopt an “Idle to walk” motion, then continue with a “Walk” motion. When the user

releases the movement key, the avatar can adopt a “Walk to Idle” motion, and then return to “Idle”. Each motion can

be designed to move seamlessly into the next one.

See “Pre-defined animations” on page 270 for more details.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bff.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79c1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79d9.html
http://www.adobe.com/support/director/examples/ElasticCamera.dir

237ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Pre-defined camera movements

Your 3D designer can create pre-defined motions that you may wish to apply to a camera. For example:

• When the player arrives at a portal in your 3D world, you may want the camera to shake as the avatar and the

camera warp to a new location.

• When the player's avatar dies, you may want the camera face down at the avatar as it moves upwards like a spirit

ascending.

You cannot apply motions directly to a camera object. You can only apply motions to models. Motions are controlled

by the #keyFramePlayer or the #bonesPlayer modifiers. Models are the only type of node with which you can use the

addModifier() method.

The solution is to attach the camera as a child to a model, and to apply the motion to the parent model.

You can create a model without any model resource, but you cannot add a modifier to a model that does not have any

geometry. If you create the model with a model resource, and then set the resource of the model to VOID, the model's

modifier list will be emptied.

As a result, you can only animate a camera with a motion if you attach it to a model that possesses geometry data, even

if that geometry is never intended to be visible.The solution is to set the model.visibility for the model to #none. The

plane(“DefaultModel”) resource is a good resource to use for this purpose.

 v3DMember = member("3D")
 vCamera = v3DMember.camera(1) -- built-in camera
 vResource = v3DMember.modelResource(1) -- built-in plane
 vMotion = v3DMember.motion(2) -- custom motion
 vMotionName = vMotion.name
 vModel = v3DMember.newModel("Camera_parent", vResource)
 vModel.visibility = #none
 vModel.addModifier(#keyFramePlayer)
 vModel.addChild(vCamera)
 vModel.keyFramePlayer.play(vMotionName)

The code above does the following:

• Creates a model.

• Makes the model invisible.

• Adds the #keyFramePlayer modifier to the invisible model.

• Adopts the camera of the 3D sprite as a child of the model.

• Animates the model and its child using a custom motion.

Sliding along a wall

What is to happen when the user navigates the first-person camera or an avatar up against an obstacle? In real life,

people do not just walk into walls and remain stuck there; they start to move along the wall.

In a 3D world, you may want to choose between two different approaches to this issue:

• The camera or avatar remains facing the barrier, but moves sideways.

• The camera or avatar turns to face parallel to the wall, and then moves forwards.

To see a demonstration of the second solution, download and launch the movie SlideAlongWalls.dir. This movie uses

a slight modification of the script used in the demo for “Steering with the mouse” on page 221.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aaa.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aad.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6802.html
http://www.adobe.com/support/director/examples/SlideAlongWalls.dir

238ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

In SlideAlongWall.dir, the camera turns to face along a barrier after coming close to it

Below you will find a handler similar to the one in the SlideAlongWall.dir movie. It accepts three parameters:

• aNode: a pointer to a node that may collide with a barrier

• aDirection: a vector pointing in the direction that aNode is attempting to travel

• aNormal: a vector pointing out from the barrier at right-angles to the point of collision

The handler will turn aNode by 2 degrees, or until it is no longer facing towards the barrier. This handler is called once

per frame, so the node will turn automatically until it is facing along the barrier. The node can then continue to travel

parallel to the barrier.

Note: If the node were touching the barrier but facing at exactly 90° to the normal, then it may remain stuck. By using a

value just over 90.0°, you can be sure that the node will be able to move after it has completed its turn.

on TurnAlongBarrier(aNode, aDirection, aNormal)
 vAngle = aDirection.angleBetween(-aNormal)
 if not vAngle then
 -- Let the user choose which way to turn
 exit
 end if

 vPosition = aNode.worldPosition
 vAxis = aDirection.cross(aNormal)
 vAngle = min(2, (90.001 - vAngle))
 aNode.rotate(vPosition, vAxis, vAngle, #world)
end TurnAlongBarrier

Note: If the user is controlling the rotation of the camera or avatar, then you will want to avoid applying an automatic

rotation. The Steer and Slide Camera With Mouse behavior detects when the user is explicitly turning, and does not call

the TurnAlongBarrier() handler when this occurs.

Hugging Terrain

In your 3D world the ground may not be flat. As the camera or avatar moves around, you will want it to remain at the

same position with respect to the terrain beneath it.

239ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

One easy way to achieve this is to send a ray downwards from above the camera or avatar, and detect where this ray

intersects with the ground model beneath it. To see an example of this in action, download and launch the movie

HugTerrain.dir.

The HugTerrain.dir movie move the avatar up and down as it moves over the terrain

Creating a terrain

The HugTerrain.dir movie uses a terrain mesh whose contours are defined by a height map stored in a grayscale image.

For more information on this technique, see “Creating a terrain mesh” on page 176.

An alternative to the solution described here is to use the “Steering with the mouse” on page 221createTerrain()

method of the Physics Engine to create a terrain which will detect collisions with objects. See “Terrains” on page 319

for more details.

Detecting the terrain under the avatar

The HugTerrain() handler below accepts three parameters:

• aNode: may be a first-person camera, an avatar, or the group which acts as the parent for the camera or the avatar

• aTerrainModel: the model that describes the collision geometry for the terrain

• aDirection: ±1, to indicate whether aNode is attempting to move forward or backwards.

The handler creates a temporary transform at the position where aNode can be after moving. It then raises the

transform vertically by an amount greater than the greatest possible change in height on the terrain, and sends a ray

downwards from that point. If the ray intersects with aTerrainModel then aNode can move to the position of the

intersection between the ray and aTerrainModel.

http://www.adobe.com/support/director/examples/HugTerrain.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f08.html

240ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on HugTerrain(me, aNode, aTerrainModel, aDirection)
 vTransform = aNode.transform.duplicate()
 vMoveToTry = vTransform.zAxis * aDirection
 vMoveToTry.y = 1000
 vTransform.translate(vMoveToTry)

 vPosition = vTransform.position
 vAxis = -vTransform.yAxis
 vRayInfo = [:]
 vRayInfo[#maxNumberOfModels] = 1
 vRayInfo[#levelOfDetail] = #detailed
 vRayInfo[#modelList] = [aTerrainModel]
 vRayData = p3DMember.modelsUnderRay(vPosition, vAxis, vRayInfo)
 if not vRayData.count then
 return 0
 end if

 vImpactData = vRayData[1]
 vPosition = vImpactData.isectPosition
 vTransform.position = vPosition

 aNode.transform = vTransform
end HugTerrain

Note: For simplicity, this handler assumes that aNode is a child of group("World"). If it has a different parent, then

vTransform will need a further manipulation before being applied to aNode.

Moving to a new zone

If your 3D world is complex, then it can be a good idea to break it up into sections. Each section can show a part of the

world. When the user is visiting one section, only the models, shaders and textures for that part of the world need to

be loaded into the computer's memory.

You can trigger a change of zone in many ways. For example:

• The player's character can move over a specific section of the ground (perhaps in a corridor). When a ray sent

downwards from the character's position detects a specific model on the ground, the action moves to a new section.

• The player's character may move a given distance from the center of the current scene.

• The player may click a specific object.

User interaction

Users can interact with a 3D world by pressing keys on the keyboard by moving and clicking the mouse, or by tapping

and dragging on a touch screen. This section looks at how you can detect and react to the user's input.

Mouse input

Director will natively react to mouse movement, and to left and right button clicks. You can find links to a number of

free Xtra extensions here.

http://www.deansdirectortutorials.com/MileHighTable/#MouseAndKeyboard

241ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

With a custom Xtra extension you can:

• Detect the use of the mouse's scroll wheel.

• Move the mouse pointer to any position on the screen without the user's intervention.

In a 3D world game where the user navigates with the mouse, it is important to reposition the mouse at the center of

the screen continually. This means that the user can continue moving the mouse in one particular direction, without

the pointer ever reaching the edge of the screen.

Touch screens

If your project is designed for a touch screen, then check whether the screen will react to:

• Both press and release (mouseDown and mouseUp)

• Dragging

• Dropping

Unless the user's finger is on the screen, your application will generate no #mouseEnter, #mouseWithin, or

#mouseLeave events. Also take into account the size and lack of precision of fingers compared to the single-pixel

accuracy of a mouse.

Director 11.5 does not natively detect multiple touches on a touch screen, so effects such as pinching and rotating with

two fingers cannot be implemented without the use of a custom Xtra extension.

Clicking and dragging

With the mouse or a touch screen, the user can:

• Indicate which direction to move the camera or an avatar. See “Mouse control” on page 242 for more details.

• Select a model or a part of a model by clicking on it. See “Picking” on page 242 for more details.

• Determine the direction in which the user is pointing. See “Sprite space and world space” on page 247 for more

details.

• Drag the mouse pointer to drag an object or draw on its surface. See “Dragging” on page 250 for more details.

Keyboard input

Director generates a #keyDown event when the user first presses any key, and repeats the event at regular intervals until

the user releases all keys. You can use an on keyDown() handler to detect keyboard input.

In a 3D environment, you can use keyboard input in many ways. For example:

• To control the movement of the camera or an avatar. See “Steering with the keyboard” on page 224 for more details.

• To make an avatar perform specific actions.

• To cut to different camera views.

• To make menu selections.

The layout of keyboards varies. Different keyboards may not have the keys organized physically in the same locations.

Your end users may be using keyboards that have been localized for their native language, so you cannot be sure that

the characters that you are used to seeing together on your keyboard appear in the same place on your end-users'

keyboards.

242ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Director can react to multiple keys being pressed simultaneously. The number of simultaneous key presses that can be

detected depends on the keys and on the end-user's operating system. See “Keyboard control” on page 254 for more

details

One solution to this issue is to allow the end-user to customize which keys to use for which actions. See “Customizing

control keys” on page 259 for more details.

Other input devices

You can find links to a number of third-party Xtra extension that allow you to control input from other devices here.

Mouse control

You can let the user control the movement of the camera or an avatar with the mouse in many ways. Here are some

examples:

• With a fixed view camera and an avatar, you can make the avatar move towards the current position of the mouse

pointer. To determine which point is currently under the mouse, see “Picking” on page 242 and “Sprite space and

world space” on page 247.

• With any type of camera, you can move the character towards the point where the user last clicked. You can see an

example of this in the demo movies for “Moving to a given location” on page 225 and “MiniMap” on page 233.

• With a first-person or third-person camera, you can use the horizontal movement of the mouse to indicate the

direction in which the character has to turn, and the vertical movement to indicate the speed of its forward or

backward motion. You can see an example of this in the demo movie for “Steering with the mouse” on page 221.

• With a first-person camera, you can use the mouse to control the direction in which the character is looking. You

can see an example of this in the demo movie for “Looking around” on page 222.

If your project allows you to use a third-party Xtra extension, then you can also implement a system where the user turns

the mouse scroll wheel to advance, or moves the mouse continuously in the direction of travel. See the tutorials here.

Picking

A 3D sprite simulates a 3D space on a 2D screen. On a 2D screen, the tip of the mouse pointer covers exactly one pixel.

On top of a 3D sprite, the mouse pointer is like a finger pointing away from your eyes out towards the far end of the

universe. The position of the pointer defines a line, not a point. The technical term for a line that starts at a point and

continues to infinity is a ray.

Director provides two functions to let you discover what model or models appear under the mouse pointer: the simple

modelUnderLoc and the more powerful modelsUnderLoc.

Tip: You can also send out a ray from any point within a 3D world in any direction to see what model or models can be

found in that direction. See modelsUnderRay for more details.

To detect rigidBody and terrain objects, you can use these methods provided by the Dynamiks Xtra: rayCastClosest and

rayCastAll.

http://www.deansdirectortutorials.com/MileHighTable/#DeviceControl
http://www.deansdirectortutorials.com/MileHighTable/#MouseAndKeyboard
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7989.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7988.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6e7b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6e7a.html

243ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

modelUnderLoc()

This simple function returns VOID or a pointer to the model that the user clicked on. There may be several models at

the position where the user clicked. The model that is returned will be the one whose clicked face is closest to the

camera.

To see this in action, download and launch the movie PlaceCylinder.dir.

This movie uses modelUnderLoc() to determine which box model the user clicked

This movie creates a set of ten small box models and places them randomly in space. It also creates a cylinder model.

When you click on the sprite, the behavior on the 3D sprite uses modelUnderLoc() to check if the click was on one of

the box models. If so, it works out how to scale and position the cylinder so that it stretches to reach to the model the

user clicked on.

Here's an extract of the mouseUp handler that discover which model the user clicked on. If the user clicked on the

sprite, but did not click on any model, the handler exits.

on mouseUp(me)
 vSprite = sprite(me.spriteNum)
 vCamera = vSprite.camera
 vSpriteLoc = the mouseLoc - [vSprite.left, vSprite.top]

 vModel = vCamera.modelUnderLoc(vSpriteLoc)
 if not vModel then
 exit
 end if
 -- More code to position the cylinder goes here
end mouseUp

modelsUnderLoc()

This function returns VOID or a list of models that appear at the given position in the 3D sprite. The method allows

a number of different parameters. For more details, see modelsUnderLoc. The syntax discussed here is:

aRayDataList = camera.modelsUnderLoc(a2DPosition, aOptionsList)

The options list must be a property list that can have the following properties and values:

[#maxNumberOfModels: <integer>,
 #maxDistance: <positive float>,
 #levelOfDetail: <#simple | #detailed>,
 #modelList: [<model>, ...]]

http://www.adobe.com/support/director/examples/PlaceCylinder.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7988.html

244ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

For example:

[#maxNumberOfModels: 1, #levelOfDetail: #detailed, #modelList:
[sprite(1).member.model("Target")]]

When you use this syntax and the value #detailed for the #levelOfDetail property, the output from the function

is a list of property lists in the following format:

[[#model: <model under the given loc>,
 #distance: <float distance to intersection point>,
 #isectPosition: <vector worldPosition of intersection point>,
 #isectNormal: <vector normal of the face at intersection>,
 #meshID: <integer id of mesh to which the face belongs>,
 #faceID: <integer id of intersected face>,
 #vertices: [<vector>, <vector>, <vector>],
 #uvCoord: [#u: <float>, #v: <float>]], ...]

The #vertices property is a list of the worldPositions of the vertices at the corners of the face that was intersected

by the ray.

The #uvCoord property gives you information about which pixel in the texture image was touched by the ray. See

“Mapping a texture to a mesh resource” on page 150 for more details.

To see an example of modelsUnderLoc() used with the #detailed option, download and launch the movie

ModelsUnderLoc.dir.

Using the #detailed option, modelsUnderLoc() provides a complete list of intersection data

The ModelsUnderLoc.dir movie simply prints the results of the modelsUnderLoc() function when it is applied to the

point identified by the red cross.

Pick Action behavior

On Director's 2D stage, you can drag and drop behaviors onto a sprite. See “3D behaviors” on page 75 for details of the

built-in behaviors that you can use with 3D sprites.

http://www.adobe.com/support/director/examples/ModelsUnderLoc.dir

245ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

In a 3D world, you cannot attach behaviors to specific models. However, every node has a userData property list, and

you can add script instances to this list. This technique has many of the same characteristics as adding a behavior to a

sprite.

You can add the Pick Action behavior to a 3D sprite to forward mouse events from the sprite to any script instances

on the userData list of the model that is under the mouse.

To see this technique in action, download and launch the movie FaceCamera.dir.

The FaceCamera.dir movie adds instances of two different scripts onto the userData list of two different models

In the FaceCamera.dir movie, when you roll your mouse over the rectangular Plane model, the shader on the Plane

model is swapped for a brighter shader. When the pointer rolls off the Plane, the original shader is swapped back. This

feature is implemented by an instance of the Rollover Model script, attached to the Plane model's userData list.

If you click on the Plane model and drag the mouse, the Plane model will move with the mouse. This feature is

implemented by an instance of the Drag Model script, attached to the Plane model's userData list. The same instance

is also attached to the Cone model's userData list, so you can drag that around too. The Plane is a child of the Cone

model, so it will move around with the Cone.

The Pick Action behavior reacts to mouse events such as #mouseEnter and #mouseDown, and forwards them to the

userData list of the appropriate model.

Registration

You can use the Pick Action behavior's Behavior Parameters dialog to switch on model registration. If this option is

selected, only models which have been registered through Pick_RegisterModel() will receive click events.

You can also choose to have registered models receive rollover events. If you select rollover detection, but not

obligatory model registration, all models will receive click events but only registered models will receive rollover events

(#mouseEnter, #mouseWithin, #mouseLeave).

Using model registration improves performance while using rollover detection degrades it.

Testing with a simple script

The FaceCamera.dir movie contains a very simple script called "Simple userData Example”. The script's new() handler

accepts two parameters:

• a3DSprite: the sprite containing the 3D world

• aModel: the 3D model to which the new instance has to be attached

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bee.html
http://www.adobe.com/support/director/examples/FaceCamera.dir

246ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

When you call the new() handler, it:

• Adds a pointer to the new instance to the chosen model's userData list

• Registers the model with the Pick Action behavior, so that it will receive rollover mouse events.

on new(me, a3DSprite, aModel)
 vUserData = aModel.userData
 vUserData.addProp(#simpleDemo, me)
 sendSprite(a3DSprite, #Pick_RegisterModel, aModel)
 return me -- ... may not in fact be required
end new
on mouseEnter(me, a3DSprite, aRayData)
 vMember = a3DSprite.member
 vColor = rgb(random(5)-1, random(5)-1, random(5)-1) * 51
 vMember.bgColor = vColor
end mouseEnter

To test this script, launch the movie, then execute the following line in the Message window:

script("Simple userData Example").new(sprite(1), sprite(1).member.model("Cone"))

If you now roll the mouse over the Cone model, the background color of the 3D member will change.

Parameters sent with mouse event handlers

The Pick Action can forward the following events to the appropriate models:

#mouseDown
#mouseUp
#mouseUpOutside
#rightMouseDown
#rightMouseUp

For models that have been registered, using a call to Pick_RegisterModel(), and for which rollover events have been

requested, the Pick Action behavior will also forward the following events:

#mouseEnter
#mouseWithin
#mouseLeave

The Pick Action behavior sends two parameters with every mouse event call.

• A pointer to the 3D sprite.

• A property list containing the intersection data returned by the modelsUnderLoc() method, for the current

model. See “Picking” on page 242 for a description of the contents of this list.

These two parameters give the instance access to all the data that it may need to react to the mouse event.

mouseUpOutside

If the mouse is clicked on one model and released over another, the first model will receive a #mouseUpOutside event

and the second model will receive a #mouseUp event without the associated #mouseDown. This is the same functionality

as with 2D sprites.

If the mouse is clicked on a model, then dragged off the sprite and released, the clicked model will receive a #mouseUp

event if the mouse was over a part of the model that is cropped by the edge of the sprite. If the model is not “under”

the mouse, or if a different (registered) model is between the model and the mouse, then the model will receive a

#mouseUpOutside event.

247ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Advantages of adding instances to a model's userData list

You can achieve the same effect by adding a separate behavior to the 3D sprite for each feature that you wish to add to

the 3D world. If there are many models that need to react in different ways to mouse events, you can end up with many

behaviors. These behaviors may repeat the same ray-casting action, just to detect whether their model has been clicked.

This would be inefficient, and would slow down the action.

If you place the Pick Action behavior on the sprite, you can execute one single modelsUnderLoc() command, and

then inform only the model that the user clicked.

For certain actions, you can add the same instance of a script to the userData list of several different models. (This is

how the FaceCamera.dir movie works with the Drag Model instance).

The code for a script that is attached directly to a model can be much simpler than the code of a behavior attached to

the sprite since all the mouse event detection is taken care of by the Pick Action behavior. The instance on the

userData list just needs to process the results of the mouse event.

Disadvantages

You can add behaviors to a 3D sprite by dragging and dropping them from a cast library. You can use the Property

Inspector at the Behavior tab to check which behaviors are attached to the sprite, and to set their parameters.

You need to use code to add a script instance to the userData list of a model, and Director provides no window for

you to inspect these instances. These instances can only be added at run-time. When you save the movie and quit, each

model's userData list will be reverted to its original content.

stopEvent

There is a major difference between this 3D technique of placing instances on a model's userData list, and placing 2D

behaviors on a sprite.

One behavior instance in a sprite's scriptInstanceList can use the 'stopEvent' command to prevent an event

from being passed on to later behaviors on the same sprite. However, the stopEvent command has no effect on the

call() command used in the Pick Action script.

When you use call(#someEvent) to send a message to the list, the on someEvent() handler will be run in all

instances in the list where it appears.

To work around this, one instance can add a #stopEvent property with a non-void value to the Ray Data List that is

sent as the second parameter to all calls made to a model's userData list. Subsequent instances on the userData list

can check for the presence of such a property, and choose not to execute any code if they find it.

If the Pick Action behavior detects that such a property has been added to the Ray Data List after a call to the userData

list, it will execute the stopEvent() command, and no subsequent behaviors on the same 3D sprite will receive that

event.

Sprite space and world space

You can map any point within a camera's field of view onto a single pixel at the surface of the 3D sprite. However, a

single point on the surface of a 3D sprite defines an infinite number of positions in the 3D world.

Director provides you two functions for mapping 3D positions to 2D points and vice versa:

• a2DPointOnSprite = camera.worldSpaceToSpriteSpace(a3Dposition)

248ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• aArbitrary3Dposition= camera.spriteSpaceToWorldSpace(a2DPointOnSprite)

worldSpaceToSpriteSpace()

If you know the co-ordinates of a point in 3D space, you can determine where that point will appear on the 3D sprite

using the worldSpaceToSpriteSpace method. For a given camera at a given moment in time, this method will give

either:

• A 2D point, measured from the top left corner of the sprite, if the 3D position is visible in the sprite, or

• VOID, if the 3D position is not within the camera's field of view.

To see an example of worldSpaceToSpriteSpace()in use, download and launch the movie KeepInView.dir.

You can drag a box to any position where all of its corners appear within the camera's field of view

Using worldSpaceToSpriteSpace()

When you click on a box, the mouseDown() handler calculates where the center of the box model appears in the sprite

view. It uses this information to determine a 2D offset from the point where the user clicked to the apparent center of

the model. It stores this value as a point in the property pOffset:

property pOffset -- offset between mouse and center of box model
on mouseDown(me)
 vSprite = sprite(me.spriteNum)
 vCamera = vSprite.camera
 vSpriteLoc = the mouseLoc - [vSprite.left, vSprite.top]
 vModel = vCamera.modelUnderLoc(vSpriteLoc)

 if not vModel then
 -- The user clicked outside any models
 else
 vWorldPosition = vModel.worldPosition
 vLoc = pCamera.worldSpaceToSpriteSpace(vWorldPosition)
 pOffset = vSpriteLoc - vLoc
 end if
 -- More code...
end mouseDown

As you drag one of the boxes around inside the 3D world, the mModelIsInView() handler executes a line similar to

this, for the proposed worldPosition of each of the corners of a box:

vSpriteLoc = sprite(1).camera.worldSpaceToSpriteSpace(vCorner)

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7875.html
http://www.adobe.com/support/director/examples/KeepInView.dir

249ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

If the resulting vSpriteLoc is VOID, then the box is not allowed to move to the proposed new position.

Note: For more information on how the dragging feature is implemented, see “Dragging” on page 250.

spriteSpaceToWorldSpace()

The function spriteSpaceToWorldSpace works in reverse. For input, it accepts a 2D point, representing an offset from

the top left corner of the 3D sprite as a parameter. For output, it returns a 3D position vector representing one of the

points in the 3D world that appears under that point in the sprite.

At that location in the sprite, there will be an infinite number of 3D points. The precise value of the point is rarely useful

on its own. However, if you subtract the worldPosition of the camera from the value returned by

spriteSpaceToWorldSpace(), you obtain a vector pointing from the camera into the 3D world through that point.

Here is a handler called GetRayUnderLoc()that accepts two parameters:

• aSpriteLoc : a 2D point, representing an offset from the top left corner of the 3D sprite

• aCamera: the camera of the 3D sprite

The GetRayUnderLoc()handler returns a unit vector which points from the camera into the world. In other words,

GetRayUnderLoc() tells you the direction in which the mouse is pointing when it is at aSpriteLoc.

on GetRayUnderLoc(aSpriteLoc, aCamera)
 vCameraLoc = aCamera.worldPosition
 vDistantLoc = pCamera.spriteSpaceToWorldSpace(aSpriteLoc)
 vRay = vDistantLoc - vCameraLoc
 vRay.normalize()
 return vRay
on GetRayUnderLoc

Placing a model under the mouse

Here's a mouseUp() handler from a 3D behavior. It will place a model named “Ball” so that its center appears directly

under the mouse at a distance of 200 world units from the camera:

on mouseUp(me)
 vSprite = sprite(me.spriteNum)
 vCamera = vSprite.camera
 vCameraPoint = vCamera.worldPosition
 vBall = vSprite.member.model("Ball")

 vSpriteLoc = the mouseLoc - [vSprite.left, vSprite.top]

 vWorldSpace = vCamera.spriteSpaceToWorldSpace(vSpriteLoc)
 vRay = vWorldSpace - vCameraPoint
 vRay.normalize()

 vBallPoint = vCameraPoint + vRay * 200
 vBall.worldPosition = vBallPoint
end mouseUp

To see a demonstration of this handler, download and launch the movie PlaceBall.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78f7.html
http://www.adobe.com/support/director/examples/PlaceBall.dir

250ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Dragging

To drag a model about in 3D space using a 2D mouse, you must limit the movement of the model to one 2D surface

within the world. Here are some examples:

• A horizontal plane where all points share the same vertical co-ordinate (parallel to the ground).

• The surface of a terrain model.

• A vertical plane, representing a wall.

• A plane that is perpendicular to the camera's zAxis (parallel to the plane occupied by the sprite viewport).

To map the 2D position of the mouse onto the appropriate plane in the 3D world, use vector and transform

mathematics. For more information on 3D mathematics, see “3D mathematics” on page 361. In this article, you can

find reusable solutions for dragging (but not mathematical explanations on how they work).

Dragging a model on a horizontal plane

To see an example of this download and launch the movie AirHockey.dir.

The air hockey puck will move over a horizontal plane as you drag it around

The Air Hockey behavior creates a white model named “Puck”. The Throw Model in Y Plane script uses

spriteSpaceToWorldSpace() to find a point under the mouse. It then imagines a line between the camera and that

point, and works out where that line crosses the horizontal plane where the Puck model is, and moves it to that point.

Here is a very simple behavior that does the same thing:

http://www.adobe.com/support/director/examples/AirHockey.dir

251ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on exitFrame(me)
 vSprite = sprite(me.spriteNum)

 -- Find the Puck model and its y position in world space
 vModel = vSprite.member.model("Puck")
 vYValue = vModel.worldPosition.y

 -- Find where the mouse is relative to the sprite
 vSpriteLoc = the mouseLoc - [vSprite.left, vSprite.top]

 -- Find the camera position and a world point under the mouse
 vCamera = vSprite.camera
 vCameraPoint = vCamera.worldPosition
 vWorldPoint = vCamera.spriteSpaceToWorldSpace(vSpriteLoc)

 -- Find how far along the line between the camera and
 -- vWorldPoint to travel in order to have the correct value
 -- for the y coordinate
 vCameraY = vCameraPoint.y
 vYOffset = vCameraY - vWorldPoint.y
 vHeight = vCameraY - vYValue
 vRatio = vHeight / vYOffset

 -- Move that distance along the ray from the camera
 -- towards vWorldPoint
 vVector = (vWorldPoint - vCameraPoint) * vRatio
 vModelPoint = vCameraPoint + vVector

 -- Move the model to that point
 vModel.worldPosition = vModelPoint
end exitFrame

The Air Hockey movie also demonstrates how to throw a model, and how to make it bounce off barriers. For more

details of these features, see “Linear motion” on page 261 and “Bouncing off a wall” on page 291.

Dragging a model over a terrain

To drag one model over the surface of a terrain model, you need to know where the ray sent into the 3D world from

the mouse pointer's current position intersects with the surface of the terrain model. You can use modelsUnderRay()

with the #detailed option to do this.

To see this in action, download and launch the movie DragOverTerrain.dir. You can use the Shockwave3D viewer

window to look at the scene from a different angle.

http://www.adobe.com/support/director/examples/DragOverTerrain.dir

252ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Use modelsUnderRay() with the #detailed option to find where a ray from the mouse touches a model

The following handler places the group “Sphere_Parent” on the point on the surface of the model “Terrain”, which

appears directly under the mouse.

on exitFrame(me)
 vSprite = sprite(me.spriteNum)
 vMember = vSprite.member
 vParent = vMember.group("Sphere_Parent")
 vTerrain = vMember.model("Terrain")

 -- Find the point on the terrain under the mouse
 vCamera = vSprite.camera
 vSpriteLoc = the mouseLoc - [vSprite.left, vSprite.top]
 vRayInfo = [:]
 vRayInfo[#maxNumberOfModels] = 1
 vRayInfo[#levelOfDetail] = #detailed
 vRayInfo[#modelList] = [vTerrain]
 vRayData = vCamera.modelsUnderLoc(vSpriteLoc, vRayInfo)

 if not vRayData.count then
 exit
 end if

 vPosition = vRayData[1].isectPosition
 vParent.worldPosition = vPosition
 end exitFrame

You can use a similar technique to drag a model over the surface of any model. To place a model representing a

painting on a vertical wall, you would simply use the Wall model in the #modelList of the modelsUnderLoc()

options list.

Dragging a model parallel to the sprite viewport

To drag a model in the plane that is parallel to the sprite viewport, you need to know which way the camera is pointing.

This is given by the zAxis property of the camera's transform in world space.

vZAxis = aCamera.getWorldTransform().zAxis

Tip: In fact, the camera's zAxis points out of the sprite towards you.

253ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The technique that you need to use is different depending on whether the camera is showing a #perspective

projection or an #orthographic projection. The technique described here is for a #perspective projection. To find

code for both techniques, download and launch the movie FaceCamera.dir.

The FaceCamera.dir movie demonstrates two techniques for dragging a model parallel to the sprite viewport.

The FaceCamera.dir movie contains a Drag Model script. Here is a simplified version of a handler from that script:

on PlaceModelUnderMouse(aSprite, aModel)
 -- Find the camera, its zAxis and aModel in world space
 vCamera = aSprite.camera
 vTransform = vCamera.getWorldTransform()
 vCameraPoint = vTransform.position
 vAxis = vTransform.zAxis
 vModelPoint = aModel.worldPosition
 -- Find a (distant) point beneath the mouse, in the world
 vSpriteLoc = the mouseLoc - [aSprite.left, aSprite.top]
 vWorldPoint = vCamera.spriteSpaceToWorldSpace(vSpriteLoc)

 -- Create a unit vector pointing from the camera to this point
 vRay = vWorldPoint - vCameraPoint
 vRay.normalize()

 -- Do a little mathematics, based on the fact that the
 -- dotProduct of two perpendicular vectors is zero.
 vCameraToModel = vModelPoint - vCameraPoint
 vDistance = (vCameraToModel * vAxis) / (vRay * vAxis)
 vNewPosition = vCameraPoint + (vRay * vDistance)

 -- Move the model to the new position
 aModel.worldPosition = vNewPosition
end PlaceModelUnderMouse

The handler used in the Drag Model script also takes into account the offset from the origin point of the model that is

being dragged and the point on the model on which the user clicked.

Additional example

The movie 3DMathematics.dir demonstrates a technique for dragging a model over an arbitrary plane.

http://www.adobe.com/support/director/examples/FaceCamera.dir
http://www.adobe.com/support/director/examples/3DMathematics.dir

254ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Using RayCutsPlane() to drag a model across an arbitrary plane

Keyboard control

Director provides two events for handling keyboard input, six properties and a function:

• on keyDown: Triggered when the user first presses a key, but before the key is displayed in any editable field or text

member. This event is also called at regular intervals if a key is held down.

• on keyUp: Triggered when the user releases a key, and after the display of a field or text member has been updated.

• _key: The character the user typed.

• keyCode: An integer related to the physical key that the user pressed (Mac) or the character that the user typed

(Windows).

• commandDown, controlDown, optionDown, shiftDown: Returns TRUE if the associated modifier key is pressed.

• keyPressed() : Returns the last char to be pressed if no parameter is used, or a boolean if char or keyCode is used as

a parameter.

To determine whether the Caps Lock key is pressed, you can use this free third-party Xtra extension.

3D sprites and keyboard focus

3D sprites can become the keyboardFocusSprite. When this is the case, #keyDown and #keyUp events are directed at

the sprite, and can be treated with on keyDown() and on keyUp() handlers in a behavior on the 3D sprite.

If you have another editable sprite on the Stage, then the user will have to transfer the keyboard focus to the 3D sprite

after editing the field or text sprite. To do this, they can click on the 3D sprite. Alternatively, if the editable member's

autoTab property is TRUE, they can use the TAB key to move the keyboard focus to the next sprite.

3D members do not have an autoTab property that you can set. They behave as if this property was always TRUE.

Suppose there is an editable sprite on the Stage and the user clicks on a 3D sprite to send keyboard input to that sprite.

Suppose the user then presses the TAB key, perhaps by mistake. The keyboard focus will now be directed to the editable

sprite; the 3D sprite will receive no further input until the user activates it again.

When the browser window containing a Shockwave movie loses focus, a 3D sprite in the movie will stop being the

keyboardFocusSprite. You can place a behavior on the 3D sprite to detect when it loses keyboard focus, and display an

overlay saying “Click here to continue” when that happens. This message will prevent users from becoming confused

if their keyboard input suddenly stops having any effect on the 3D world. See “Customizing control keys” on page 259

for a demo of this technique.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b44.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7743.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7fc5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8d.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f89.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8f.html
http://www.scirius.com/CapsLockXtra.htm
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f12.html

255ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Keyboard issues

Before you start planning a keyboard control system for your 3D movie, go through the main issues of using keyboard

input:

• You cannot be sure what character will be produced by a given physical key. For different input languages, the

arrangement of the characters on a keyboard is different. On an English-language keyboard, the first five letters are

QWERTY. On some French-language keyboards, the same keys denote the letters AZERTY.

• The physical layout of a keyboard is not standardized. For a given input language, you may find certain keys in

different places on different keyboards. Certain ergonomic keyboards make it difficult to press certain key

combinations.

• The value of _key.keyCode may be different on Mac and on Windows for keyboards other than the standard US

English layout.

• Many users for whom English is not a first language will have keyboards set to input Unicode characters, rather

than Roman characters. On Windows, in Director 11.5, the _key.keyPressed() function does not work correctly.

As a result, you may not be able to detect keyboard input correctly for many languages.

• In Director 11.5, the results you see in Director's authoring environment may be different from those you see in

Shockwave.

• Director can react to multiple keys being pressed simultaneously. The number of simultaneous key presses that can

be detected depends on the keys and on the end-user's operating system. For example, if a user holds down all 4

arrow keys, only 2 #keyDown events will be generated.

Detecting keyboard input

Director generates a on keyDown event when a key is first pressed. In an on keyDown() handler, you can use keyCode,

_key, or keyPressed() to determine which key was pressed most recently.

The #keyDown event is repeated continuously while any key is held down, but the value of the _key properties may

change if new keys are pressed. Director generates a #keyUp event when any key is released, but it does not provide

any specific information about which key was released.

To test how Director reacts to keyboard input, download and launch the movie KeyPressed.dir. If you are working on

Mac OS X, then you will find it useful to open Apple’s Keyboard Viewer application at the same time.

Try pressing all 8 “home” keys (ASDF JKL;) at the same time. You will see that both Windows and the Mac OS X

operating system only detects the first 6 keys that were pressed, and passes the input information to Director.

Monitoring which key was released

When Director generates a #keyUp event, it does not provide any information about which key was released. To work

around this shortcoming, the KeyPressed.dir movie maintains a list of which keys are currently being held down.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b44.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8f.html
http://www.adobe.com/support/director/examples/KeyPressed.dir

256ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

global glKeysPressed
on startMovie()
 glKeysPressed = [:]
 glKeysPressed.sort()
end startMovie
on keyDown()
 vKey = _key.key
 vCode = _key.keyCode
 if not glKeysPressed.findPos(vKey) then
 glKeysPressed.addProp(vKey, vCode)
 end if
end keyDown

When a #keyUp event is generated, the script checks which keys recorded in glKeysPressed are still being pressed, and

deletes any that are not.

on CheckKeysPressed()
 ii = glKeysPressed.count
 repeat while ii
 vKey = glKeysPressed.getPropAt(ii)
 if not keyPressed(vKey) then
 vCode = glKeysPressed.getAt(ii)
 if not keyPressed(vCode) then
 glKeysPressed.deleteAt(ii)
 end if
 end if
 ii = ii - 1
 end repeat
end CheckKeysPressed

Note: This handler checks for both keyPressed(aChar) and keyPressed(aKeyCode) before considering that a key has

been released. See “Issues with keyPressed() on Windows” on page 258 and “Issues with keyPressed() on Macintosh” on

page 257 for more details.

Visualizing different keyboard layouts

To display a keyboard viewer on Mac OS X, you can open the System Preferences at the Input Menu tab of the

International pane. Check the Keyboard Viewer and Show Input Menu In Menu Bar boxes. You now see an Input

menu to the right of the menu bar. You can select Show Keyboard Viewer from this menu. You can also use the same

tab in the System Preferences window to select a variety of different keyboard layouts.

Note that some layouts will produce input which will not display correctly in all fonts. In Director, choose a font that

is appropriate for the input language.

On Windows, you can display an On-Screen Keyboard, by selecting Start > All Programs > Accessories > Accessibility

> On-Screen Keyboard. This view allows you to visualize the keyboard layout, but it does not provide you with

feedback on which keys are pressed.

To add an input layout on Windows, you need to choose Control Panel, then Regional and Language Options. Click

the Languages tab and then the Details button. In the Text Services and Input Languages window, click Add, and then

make your selections.

An input selection menu will appear near the right end of the task bar. You can select which input layout and language

you wish to use there.

257ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Characters, key and keyCode

On Macintosh, the value of _key.keyCode depends on the actual physical key that the user presses. On an English

keyboard, the key beside Caps Lock is an A; on French keyboard it is a Q. In both cases, the value of _key.keyCode

produced by pressing this key will be 0.

This means that, on Macintosh, you can use _key.keyCode to indicate exactly which physical key the user pressed.

On Windows, the value of _key.keyCode depends on the character that is generated when the key is pressed. Pressing

A on an English keyboard or A on a French keyboard will lead to the same value of _key.keyCode, even though

different physical keys are pressed.

Pressing the key beside the Cap Locks key produces Q in French, and a _key.keyCode of 12

Issues with keyPressed() on Macintosh

In Director 11.5, on Macintosh, the values of _key.key and _key.keyCode immediately after a #keyDown event

represent the character that was typed and the key that was pressed respectively. However, keyPressed(aChar)

assumes that the user is typing on a standard US keyboard. Here is a simple Movie Script handler that you can use to

check this:

on keyDown()
 if not _key.keyPressed(_key.key) then
 put "KeyPressed(""E&_key.key"E&") error"
 end if
 if not _key.keyPressed(_key.keyCode) then
 put "KeyPressed("&_key.keyCode&") error"
 end if
end keyDown

Set the input keyboard layout for your computer to something other than a standard US English keyboard, launch your

movie and press each key in turn. Watch the output in the Message window.

If you chose a French keyboard, for example, where the same Roman letters have a different layout, you will find that

the keyPressed() function fails when it's used on characters that are not in the same place as on a US keyboard.

258ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

If you chose a keyboard that generates Unicode characters, such as Russian, then you will find that it fails on all

characters and keyCodes, except for the key with a keyCode of 0.

In a projector or in Shockwave, on Macintosh, keyPressed(aKeyCode) will succeed, but keyPressed(aChar) may fail.

keyPressed(aKeyCode) works correctly in Shockwave and projectors on Macintosh but keyPressed(aChar) may fail

Issues with keyPressed() on Windows

On Windows, keyPressed() will fail on Unicode input in all environments.

keyPressed(aKeyCode) fails with Unicode input in all environments

For the standard Roman characters used in US English, both keyPressed(aChar) and keyPressed(aKeyCode) will

function correctly, regardless of the keyboard layout. This is because the value of _key.keyCode ignores the keyboard

layout.

keyCode values for UTF-8 input

If the user's keyboard is set to input Unicode characters, rather than Roman characters, then Windows is unable to

generate a usable value for _key.keyCode. On Windows, in Director 11.5, the value for _key.keyCode may not

provide any usable values. In Shockwave and in a projector, the Director player will generate valid values for

_key.keyCode on a Macintosh, but an unhelpful value of 127 for all keys on Windows.

Differences between the authoring environment and Shockwave

For Unicode input, in the authoring environment for Director 11.5, the value for _key.keyCode is consistently 0 on

both Windows and Macintosh. This means that it is not possible to use _key.keyCode to distinguish any Unicode

character from the Roman letter A.

Multiple simultaneous key presses

Depending on the operating system and the keyboard, Director can handle as many as six simultaneous key presses.

Your computer may not behave the same way as your end-user's computer.

259ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

If you have complete control over the playback environment (for a kiosk, for example), then you can run a

comprehensive test on which keys can be pressed simultaneously. If you are creating an application for general, cross-

platform release, then you be very cautious about requiring the user to make multiple simultaneous key presses.

Before committing to a keyboard control system that requires multiple simultaneous key presses, try testing the

KeyPressed.dir movie on a wide range of target machines. Verify whether or not the key combinations that you intend

to use work on all the test computers.

Arrow Keys

Director can only inform you about the first two arrow keys that have been pressed. If the user presses three or more

arrow keys simultaneously, your application may not receive any information about the third and fourth arrow key

press, until one of the earlier keys is released.

Customizing control keys

Unless you know that all users of your 3D movie will have standard US English keyboards, allow the users to customize

the keyboard controls.

On Windows, you cannot rely on keyPressed() being operational for users whose keyboards generate Unicode

characters. On Macintosh, you cannot rely on keyPressed(aChar) returning the expected value for non US

keyboards. See “Keyboard control” on page 254 for more details.

For an application, there are three safe strategies:

• Check _key.commandDown, _key.controlDown, _key.optionDown, or _key.shiftDown to see if the user is pressing

a modifier key.

• Check the value of _key.keyCode to determine whether the user pressed an arrow key, a page key, or the delete or

backspace key.

• Inside an on keyDown() handler, check the value of _key.key to determine which character appears on the key that

the user just pressed. Such an action limits you to detecting a single character key at a time.

These three techniques will work cross-platform and with any keyboard layout. Note that pressing a modifier key will

not trigger an on keyDown() handler. You may need to poll for the modifier keys in an on enterFrame() handler.

Note: Typically, if you press a key and hold it down, the keyboard will send a first #keyDown event, then pause, and then

send a regular stream of #keyDown events. Take this delay into account when designing the keyboard interactions.

A screen for customizing controls

If you plan to allow the user to press character keys, then provide a screen where users can customize the keyboard

controls. This screen can indicate the various actions that you have programmed into the game, and ask users to type

the key that they want to use for that action.

You can store the key, keyCode and modifier data in a property list, to act as a look-up table. For example, after the

user has visited the Customize Controls screen, your property list may look like this:

vControlsList = [126: #forward, "w": #forward, "W": #forward, 125: #back, "s": #back, "S":
#back, 124: #right, "d": #right, "D": #right, 123: #left, "a": #left, "A": #left, #Shift: #Run,
#control: #fire]

Property lists are case sensitive. If the user may be pressing the Shift key at the same time as a character key, you will

need to include both characters if you wish to use.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8d.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f89.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f8b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7700.html

260ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Treating keyboard input

You can use an on keyDown() handler to detect when the user is pressing a character key, and an on enterFrame()

handler to detect when the user is pressing an arrow key or a modifier key.

To see an example of this, using text display rather than real 3D actions, download and launch the movie

CustomControlDemo.dir.

When it has keyboard focus, the behavior on the 3D sprite detects key presses and converts them into actions

The CustomControlDemo.dir movie contains an editable sprite. Before the 3D sprite can receive any keyboard events,

the user must ensure that it has keyboard focus. See the Customizable Controls behavior on the 3D sprite for a

suggestion on how to convert keyboard input into actions using a list of action keys.

Note: The movie does not show you how to customize this list of action keys. It simply shows how to work with a

customized list that has been created elsewhere.

Motion

Movement in a 3D world can be controlled in several different ways.

• You can move 3D nodes around using Lingo or JavaScript code. See “Code-driven motion” on page 260.

• You can add a keyFrame motion to a model to move it through space. See “Keyframe animations” on page 274.

• You can add a bones motion to a model to change the shape of its internal mesh. See “Bones animations” on

page 276.

• You can create animated particle emitters. See “Particles” on page 197.

• You can apply physical features, such as, mass and force, to models, and rely on a Physics member created by the

Dynamiks xtra to control all the interactions in a deterministic way. See “Physics” on page 293 for details.

Code-driven motion

You can use Lingo or JavaScript code to place a node in 3D space, and to set its orientation and scale. See “Arranging

objects in a 3D world” on page 202 for a description of the Lingo and JavaScript terms that you need to achieve this.

http://www.adobe.com/support/director/examples/CustomControlDemo.dir

261ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Types of motion

You may need to move nodes around in your 3D world in different ways. For example:

• Moving in a straight line. See “Linear motion” on page 261 for details.

• Moving between two known points. See “Interpolation” on page 264 for details.

• Following a pre-defined path, like a train. See “Following a path” on page 267 for more details.

Updating a node on every frame

To create the illusion that a node is moving smoothly, change the disposition of the node on a regular basis. This means

using an event that is generated many times a second to trigger a handler or function that updates the transform of the

node. You can achieve this result in the following ways:

• Using an event generated every frame. See “Using frame events wisely” on page 397.

• Using a timeOut object to call a handler or a function on a regular basis. See Create Timeout objects.

• Registering a script for a #timeMS event generated by the 3D cast member. See registerForEvent() for details.

For all the examples in this section, the technique adopted is to add a behavior, and a script or script instance to the

actorList.By doing so, #stepFrame events for the behavior, script or script instance in question, are generated. This

technique is not as efficient as using #enterFrame events, but it has four distinct advantages over the alternatives:

• It is simple to add any behavior, script or script instance to the actorList. Forwarding #enterFrame events to

parent scripts and script instances requires additional steps.

• Adding a scripting object to the actorList adds the minimum additional overhead to the Director playback

engine. When a timeOut object is created, it generates a whole range of events for its target object, many of which

will not be required.

• This technique works equally well for non-3D features. Only 3D members can generate a #timeMS event.

• An on stepFrame handler can be triggered only when it is required.

Linear motion

You can simulate the simple motion of an object in Director without the use of any extra extensions. From your high

school physics classes you may remember the equations of linear motion. These equations relate distance, speed, time,

and acceleration to one another.

• distance = averageSpeed * time

• acceleration = (startSpeed - endSpeed) / time

• distance = startSpeed*time + acceleration*time*time / 2

Using Lingo to simulate linear motion and friction

To see these equations implemented in Lingo, download and launch the movie AirHockey.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c158f2-7fda.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c3.html
http://www.adobe.com/support/director/examples/AirHockey.dir

262ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Throw the air hockey puck and watch it slow down and stop

In the AirHockey.dir movie, drag the white puck and release the mouse button while the mouse is still moving. When

you do so, the puck gains an initial speed and direction. The friction between the puck and the horizontal surface is

simulated by an acceleration of -0.001 world units per millisecond per millisecond. These three items — speed,

direction and acceleration — are enough to calculate the trajectory of the puck.

In the AirHockey.dir movie, you will find a Movie Script named Linear Motion. This contains eight handlers. Four of

these allow you to calculate the following information:

• How long it will take the puck to stop moving, due to friction

• How far the puck will have traveled after a given time

• How long it will take the puck to collide with a barrier

• At what speed the puck will be traveling when it collides with the barrier

To see how to detect a collision with the barrier, see “Rays” on page 285. To discover what happens when the puck

collides with the barrier, see “Bouncing off a wall” on page 291. To see how to drag the puck around, see “Dragging”

on page 250. This article deals with the movement of the puck between impacts.

Throwing the puck

How does the movie calculate the direction and speed with which you throw the puck? As you drag the puck around

with the mouse, the Throw Model in Y Plane behavior in the AirHockey.dir movie calculates the latest position of the

puck. It stores this position along with the current time in milliseconds in a property list. Here is a simplified version

of the code.

263ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

property pPuck -- model("Puck")
property pAcceleration -- -0.001
property plPositions -- [<milliseconds>: <world position>, ...]
property pThrowTime -- milliseconds when puck was released
property pThrowSpot -- world position where puck was released
property pSpeed -- speed of puck when it was released
property pDirection -- direction of travel of puck on release
property pTimeToStop -- milliseconds until puck stops moving
on mouseDown(me)
 pPuck = member("3D").model("Puck")
 pAcceleration = -0.001
 plPositions = [:]
 plPositions.sort() -- enables list.findPosNear()
 (the actorList).append(me)
end mouseDown
on stepFrame(me)
 -- ... other code to set the position of the puck
 plPositions.addProp(the milliseconds, pPuck.worldPosition)
end stepFrame

When you release the mouse button, the mThrow() handler is called. This works out where the puck was about 200

milliseconds before it was released, and where it was on the frame immediately before it was released. Below is a

simplified version of the code.

vCount = plPositions.count()
 vLast = the milliseconds - 200 -- approximate time
 vIndex = plPositions.findPosNear(vLast)
 pThrowTime = plPositions.getPropAt(vCount)
 vLast = plPositions.getPropAt(vIndex) -- recorded time
 vElapsed = pThrowTime - vLast
 vThen = plPositions[vIndex]
 pThrowSpot = plPositions.getLast()

The variable vThen now contains the puck's position about 200 milliseconds ago, pThrowSpot contains the position

where it was on the last frame, and vElapsed contains the time between these two positions. Subtracting one position

from the other gives the displacement between the two positions.

The mThrow() handler calculates the speed and direction of the movement in two separate property variables, and also

how long it will take the puck to come to a halt due to the effect of friction.

 pDirection = pThrowSpot - vThen
 pSpeed = pDirection.magnitude / vElapsed
 pDirection.normalize() -- unit vector
 pTimeToStop = -pSpeed / pAcceleration

Calculating the current position of the puck

After you release the puck, on every frame, the mSlide() handler calculates how much time has elapsed since the puck

was released. It uses that information to determine where the puck is at the current point in time. Here is a simplified

version of the handler. It incorporates the getDistance() handler from the Linear Motion script:

264ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on mSlide(me)
 vElapsed = the milliseconds - pThrowTime
 if vElapsed > pTimeToStop then
 vElapsed = pTimeToStop
 (the actorList).deleteOne(me)
 -- This will be the last time the puck moves
 end if
 vDistance = (pSpeed + (pAcceleration*vElapsed)/2) * vElapsed
 vWorldPosition = pThrowSpot + pDirection * vDistance

 pPuck.worldPosition = vWorldPosition
end mSlide

The puck stops

Notice how the mSlide() handler checks whether the puck moment when the puck stops has passed. If it does not do

this, the puck will come to a stop, and then start to accelerate in the opposite direction, as if friction behaved like an

elastic band.

Interpolation

The interpolate() and interpolateTo() methods allow you to calculate a transform that is partway between one

transform and another. To visualize what this means, download and launch the movie Interpolation.dir.

Dragging the slider will move the blue half-cone from the between the two other half-cones

Using interpolate()

The syntax for the interpolate method is:

outputTransform = transform1.interpolate(transform2, aPercentage)

The value of aPercentage must be between 0.0 and 100.0. If you use a value outside this range, a script error occurs.

The output is a transform, the scale of which will be vector(1.0, 1.0, 1.0), regardless of the scales of the input

transforms. The position and rotation properties of the output transform will be a weighted average of the

position and rotation of the two other transforms.

If aPercentage is 0.0, then the output is a transform whose position and rotatation are identical to that of

transform1. If aPercentage is 100.0, then the output is a transform whose position and rotatation are identical

to that of transform2.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79c1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79d9.html
http://www.adobe.com/support/director/examples/Interpolation.dir

265ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Neither transform1 nor transform 2 is modified by the interpolate() function.

To understand how interpolate() behaves when the input transforms have a scale other than 1, click on the New

Example With Random Scale button.

The transform returned by interpolate() will always have a scale of 1

Try the following commands in the Message window:

-- Lingo syntax
v3DMember = member("3D")
vBlueModel = v3DMember.model("Inter")
vStart = v3DMember.model("Start").transform
vEnd = v3DMember.model("End").transform
vBlueModel.transform = vStart.interpolate(vEnd, 10.0)
// JavaScript syntax
v3DMember = member("3D");
vBlueModel = v3DMember.getPropRef("model", 2);
vStart = v3DMember.getPropRef("model", 1).transform;
vEnd = v3DMember.getPropRef("model", 3).transform;
vBlueModel.transform = vStart.interpolate(vEnd, 10.0);

Examples

You can find examples of transform.interpolate() in the following movies:

• Interpolate.dir: See “Color buffer” on page 105 for details.

• WheelDemo.dir: See “Node hierarchy” on page 91 for details.

• KeyboardControl.dir: See “Moving to a given location” on page 225 for details.

These movies use a parent script named Interpolation. An instance of this script places itself on the actorList and

performs the call to interpolate() once per frame, with the percentage value increasing from 0.0 to 100.0 over a

given period of time.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79c1.html
http://www.adobe.com/support/director/examples/Interpolate.dir
http://www.adobe.com/support/director/examples/WheelDemo.dir
http://www.adobe.com/support/director/examples/KeyboardControl.dir

266ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The Interpolate.dir movie demonstrates the use of the Interpolate parent script to animate a model over time

Using interpolateTo()

The syntax for the interpolateTo() method is:

transform1.interpolateTo(transform2, aPercentage)

The value of aPercentage must be between 0.0 and 100.0. If you use a value outside this range, a script error occurs.

The interpolateTo() method modifies transform1 by interpolating from the position and rotation of transform1

to the position and rotation of transform2 by the specified percentage. The original transform1 is changed. Its

position and rotation properties will be modified, but its scale will remain the same.

If aPercentage is 0.0, then transform1 will not be altered. If aPercentage is 100.0, then the transform1 will now

have a position and rotatation that are identical to that of transform2.

Example uses

InterpolateTo() is useful if you want to move a node partway towards another one. For example, you can use

interpolateTo() to give some elasticity to a third-person camera. Imagine that you attach a group named

“RestPosition” as a child of the player's avatar, and place it in the ideal position for the camera when the avatar is

standing still. On each frame, you can use interpolateTo() to move the camera 10% of the way from its current

position towards the RestPosition group. When the avatar starts to run forward, the camera will lag a little behind.

When the avatar slows down, the camera will ease back in towards the ideal rest position.

To see an example of this, download and launch the movie ElasticCamera.dir.

http://www.adobe.com/support/director/examples/ElasticCamera.dir

267ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Using interpolateTo() gives a natural lag between the movement of the avatar and the movement of the camera

In the ElasticCamera.dir movie, take a look at the Elastic Third Person Camera script. The on stepFrame() handler

includes a command similar to the following.

sprite(1).camera.transform.interpolateTo(aRestTransform, 10.0)

Launch the movie and the following commands in the Message window. You will observe that the avatar moves

backwards and to the left, moving halfway towards the position vector(-125, 0, 250) and rotating halfway towards

the rotation vector(0, -45, 0). The camera will move smoothly after this point, using interpolateTo() several times

on successive frames, until it comes to rest giving the view shown in the screenshot above.

-- Lingo
vAvatarTransform = member("3D").group("Avatar_Parent").transform
vTargetTransform = transform()
vTargetTransform. position = vector(-125, 0, 250)
vTargetTransform. rotation = vector(0, -45, 0)
vAvatarTransform.interpolateTo(vTargetTransform, 50.0)

// Javascript
vAvatarTransform = member("3D").getPropRef("group", 2).transform
vTargetTransform = transform();
vTargetTransform. position = vector(-125, 0, 250);
vTargetTransform. rotation = vector(0, -45, 0);
vAvatarTransform.interpolateTo(vTargetTransform, 50.0);

Following a path

You don't always want to move a node along a straight path. This article explains one way to move a node along a

curved path. You can find an alternative solution at “Keyframe animations” on page 274.

To visualize the technique described here, download and launch the movie Tubing.dir.

http://www.adobe.com/support/director/examples/Tubing.dir

268ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The Tubing.dir movie creates a tube mesh resource from the curve defined by a vectorShape member

Creating a tube

The Tubing.dir movie uses a script named Bezier to Points to convert the smooth curve of a vectorShape member into

a series of discrete points. When these points are joined together by straight lines, they give an approximation to the

original curve.

The script named 3D Tube takes these points and generates a mesh resource from it. If you change the shape of the

curve in the Tube vectorShape member and relaunch the movie, the tube that will be created will follow the curve that

you created.

In the process of generating the tube, the 3D Tube script creates two lists:

• pPointsList: a list of the vector positions around which the tube is created

• pRunningTotal: a sorted list of distances from the beginning of the tube to the nth point in pPointsList. This list

behaves like a tape measure that is fixed at the first point in pPointsListand pulled taut around all the points in

pPointsList, measuring the distance to each point.

From pRunningTotal, it is easy to discover the total length of the path:

pTotalLength = pRunningTotal.getLast()

In your movies, you may not want to create a tube. All you need is the list of points, the cumulative list of distance,

and the total length of the path. The tube just provides a visual cue about the shape of the path to follow.

Moving along the path

With the properties described in the previous section, you can calculate any position on the line. The Lingo handler

GetPosition() accepts a floating point number between 0.0 (start of the path and 1.0 (end of the path) and returns a

vector position along the line that joins all the dots.

269ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

property pPointList -- list of n vector positions
property pRunningTotal -- sorted list of n-1 distances along path
property pTotalLength -- final value in pRunningTotal
on GetPosition(aRatio)
 vDistance = pTotalLength * aRatio

 vIndex = pRunningTotal.findPosNear(vDistance)
 vLast = pPointList[vIndex - 1]
 vNext = pPointList[vIndex]
 vDirection = (vNext - vLast).getNormalized()

 vComplete = pRunningTotal[vIndex - 1]
 vRemaining = vDistance - vComplete

 vPosition = vLast + vDirection * vRemaining
 return vPosition
end GetPosition

Note the use of list.findPosNear() on a sorted list, to give the index of the next value in the sorted list, which is equal

to or greater than the requested value.

You can apply the position along the path to any kind of node, including cameras

Looking along the path

To get the node to turn to face along the path, you can simply ask for a position slightly further along the path, and use

node.pointAt() to make the node face in that direction.

Choose carefully how far ahead to look. Ideally, the position must be on the line segment one or two points further

along the path. If the point to look at is sometimes on the same segment, the node will alternate between rotating and

not rotating, and the effect will not be natural. If it's too far ahead, the node may tend to point in the wrong direction.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a2c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf7.html

270ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Choose a pointAt position that is just a little more than one segment ahead (right)

Pre-defined animations

You can create animated movements in a third-party 3D design application and export them along with your 3D world

as a W3D file.

The following are the two types of pre-defined animations in Director:

• A Keyframe animation is a time-based animation sequence. A keyframe motion stores the value for the transform

of a node at key points along a timeline. When the animation is played back, the transform of the node is

interpolated from one key frame to the next, over time. You can add the Keyframe player modifier at runtime to a

model created in Director.

• A Bones animation modifies the model’s geometry over time. Bones animations apply a sequence of movements to

invisible bones a 3D model. As the bones move, so the mesh of the model changes shape. A bones animation can

be used to create movements for a character, such as walking, running or standing idle. It can also be used to deform

models in more dramatic ways. For example, you can use a bones animation to simulate the way the bodywork of

a car crumples on impact.

The individual movements within a Bones animation may be defined by keyframes. However, a Keyframe

animation on its own will not change the shape of the model's mesh.

Although it is possible to add the Bones player modifier at runtime, there is no reason to do so. The Bones player

modifier is automatically attached to the bones of animated models exported from a 3D-modeling application.

Since the required bones information cannot be assigned in Director, it has to exist before the model is imported

into Director.

Like all modifiers, the bones and keyframe player modifiers can be attached only to models.

To play these animations back inside your Director movie, you will need to use either the #keyframePlayer modifier

or the #bonesPlayer modifier. You can control the playback of pre-defined animations through scripting.

To use a keyframe animation on a camera or a light, attach the keyframe modifier to an invisible model, and make

the camera or the light a child of the model.

You can combine the two types of animation. You can, for example, combine a “run in place” bones animation with a

“move around the room” keyframe animation.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bd5.html

271ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

You cannot create new animations within Director. You can however create new motions to map an existing

animation to specific bones in an animated model. However, in Director 11.5, there is no method for obtaining the

names of the bones within an animated model. See Motions for more details.

Motions

A 3D cast member can contain a set of motions authored in your 3D-modeling application. Motions are either of the

type #keyframe or #bones. A motion with a type of #none can act as an inactive placeholder. To play back a motion,

use the appropriate modifier.

Play list

The keyframe and bones players manage a queue of motions. The first motion in the play list is the motion that is

currently playing or paused. When that motion finishes playing, it is removed from the play list and the next motion

begins.

Motions on the playList can be blended into each other as they are playing, in which case they will play simultaneously.

See “Motion blending” on page 272 for more details.

Adding a motion to the playList

You can use two commands to add a motion to the playList.

• model.motionsPlayer.queue()

• model.motionsPlayer.play()

Both queue() and play() accept a series of parameters which allow you to determine where the motion starts playing,

when it ends, whether it loops, and how quickly it plays. See the Scripting Dictionary entries for details.

The following example adds two motions to the playList for the model named “Bronco”:

-- Lingo syntax
vModel = member("3D").model("Bronco")
vModel.bonesPlayer.queue("Buck")
vModel.bonesPlayer.play("Rear")

The queue() command places the named motion at the end of the playList. It will start to play when all the motions

already in the queue have finished playing.

The play() command places the named motion at the beginning of the playList and starts to play it. The motion that

was previously playing is stopped, and pushed back to the second position in the playList.

In the example given above, the Buck motion was placed first in the queue, and then immediately replaced in the first

position by the Rear motion. As a result, the motions play in the order Rear, then Buck. If autoblend were FALSE, the

playList looks like this (edited for clarity):

time 0: [[#name:"Buck", #endTime:813]]
time 1: [[#name:"Rear", #endTime:446], [#name:"Buck", #endTime:813]]
-- The motion Rear now plays
time 447: [[#name:"Buck", #endTime:813]]
-- The motion Rear is finished, so Buck can now play
time 1260: []
-- The motion Buck is now also finished

Motions are removed from the play list automatically when they are complete.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b42e3d6e8611d55854c94-7ff7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS0c3ae2fbbc706611-689fe9bb11e3fdc84dc-8000.html

272ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Removing a motion from the playList

You can use two commands to remove a motion from the playList

• model.motionsPlayer.playNext() removes the motion that is currently playing, and starts playing the next motion

in the playList.

• model.motionsPlayer.deleteLast()removes the motion that is at the end of the playList. If there is only one

motion on the playList, it will stop that motion as it is playing.

You can only remove motions from the beginning or the end of the playList. If you need to remove a motion from the

middle, you will need to use deleteLast() multiple times until the unwanted motion has been removed. You will

then have to use queue() to replace the desired motions that you deleted earlier.

Motion blending

If model.motionsPlayer.autoBlend is TRUE, an ending motion blends smoothly into the next motion using the

model.motionsPlayer.blendTime property to determine how long the blend must be. You can control this manually

by setting autoBlend to FALSE and using model.motionsPlayer.blendFactor to control the blend frame by frame.

Animation properties

The #keyframePlayer and #bonesPlayer modifiers share many properties and methods.

• model.motionPlayer.playing() indicates whether a model is executing a motion.

• model.motionPlayer.playlist is a linear list of property lists containing the playback parameters of the motions that

are queued for a model.

• model.motionPlayer.currentTime indicates the local time, in milliseconds, of the currently playing or paused

motion.

• model.motionPlayer.playRate is a number that is multiplied by the scale parameter of the play() or queue()

command to determine the playback speed of the motion.

• model.motionPlayer.playlist.count returns the number of motions currently queued in the playlist.

• model.motionPlayer.currentLoopState indicates whether the motion plays once or repeats continuously.

• model.motionPlayer.autoBlend indicates whether the modifier creates a linear transition to the currently playing

motion from the motion that preceded it.

• model.motionPlayer.blendTime indicates the length of the transition created by the modifier between motions

when the modifier’s autoblend property is set to TRUE.

• model.motionPlayer.blendFactor indicates the degree of blending between motions when the modifier’s autoBlend

property is set to FALSE.

• model.motionPlayer.positionReset indicates whether the model returns to its starting position after the end of a

motion or each iteration of a loop.

• model.motionPlayer.rotationReset indicates the rotational element of a transition from one motion to the next, or

the looping of a single motion.

• model.motionPlayer.rootLock indicates whether the translational component of the motion is used or ignored.

• model.motionPlayer.lockTranslation indicates whether the model can be displaced from the specified planes.

Animation Methods

• model.motionPlayer.pause() halts the motion currently being executed by the model.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-792f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7590.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7eae.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7939.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7ca6.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBcQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWScf09ce35f85d76b46815dfa11d55854ddc-7fd3.html&ei=aFwdTo_eI4jsrQeRyr2TDA&usg=AFQjCNGKY8T47QVWkE1_LT96ncUmZqJt_Q
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c26.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7351.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b46815dfa11d55854ddc-7fd6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7217.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7216.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7220.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7218.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-792c.html

273ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• model.motionPlayer.play() initiates or unpauses the execution of a motion.

• model.motionPlayer.playNext() initiates playback of the next motion in the playlist.

• model.motionPlayer.queue() adds a motion to the end of the playlist.

• model.motionPlayer.removeLast() removes the last motion from the playlist

Animation Events

You can tell Director to call a given handler in a given script or script instance whenever an animation starts or ends.

You can use two different methods to do this:

• member3D.registerForEvent()

• model.registerScript()

The member3D.registerForEvent() method calls the given handler for all animation events on all models in a given

3D member. The model.registerScript() calls the given handler only for animation events on the given model.

Both methods require the following parameters:

• eventName: either #animationStarted or #animationEnded

• handlerName: symbol handler name for callback

• scriptObject: script or script instance containing the given handler

Note: Director makes no attempt to check whether you used a valid eventName or whether the given script object does

indeed contain the named handler.

#animationStarted is sent when a motion begins playing. If blending is used between motions, the event is sent as

soon as the transition begins.

#animationEnded is sent when a motion ends. If blending is used between motions, the event is sent when the

transition ends.

Each time one motion replaces another #animationStarted is sent for the new motion before #animationEnded is

sent for the previous one. When autoBlend is TRUE, there may be some delay between the next motion starting and

the previous motion ending.

Director will send three arguments to the declared handler includes three arguments:

• The event type: either #animationStarted or #animationEnded

• The name of the motion

• The current time of the motion in milliseconds

To see an example of using events to queue motions in the playList, download and launch the movie

QueueMotions.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7eae.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-792f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7930.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a46.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c3.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf6.html
http://www.adobe.com/support/director/examples/QueueMotions.dir

274ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

An #animationEnded event will trigger the on StartQueue() handler and refill the motion playList

See “Events” on page 355 for information on the other events that can be generated by a 3D member. See “Animation

event callback” on page 358 for examples of animation callback handlers.

Keyframe animations

The keyframePlayer modifier shares all its properties, methods and events with the bonesPlayer modifier. See “Pre-

defined animations” on page 270 for details.

Unlike the Bones animations, keyframe animations can be applied to any model. Keyframe animations do not require

any particular internal structure in the models they are applied to. To add the keyframePlayer modifier to a model at

runtime, use model.addModifier().

Note: It is not possible to add modifiers to cameras, groups or lights. However, it is possible to add the keyframePlayer

modifier to an invisible model, and to add a camera, group or light as the child of the invisible model.

To see an example of this, download and launch the movie KeyFrameCamera.dir.

The KeyFrameCamera.dir movie animates a camera by attaching it as a child to an invisible model

Adding the keyframePlayer to an invisible model

The following code creates a model using the 1x1 unit DefaultPlane resource, and then makes the model invisible

before attaching the keyframePlayer modifier to it:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798c.html
http://www.adobe.com/support/director/examples/KeyFrameCamera.dir

275ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

-- Lingo syntax
v3DSprite = sprite("3D")
v3DMember = v3DSprite.member
vResource = v3DMember.modelResource(1)
vModel = v3DMember.newModel("Camera_parent", vResource)
vModel.visibility = #none
vModel.addModifier(#keyframePlayer)
vModel.addChild(v3DSprite.camera, #preserveParent)
// JavaScript syntax
v3DSprite = v3DSprite("3D");
v3DMember = v3DSprite.member(;
vResource = v3DMember.getPropRef("modelResource", 1);
vModel = v3DMember.newModel("Camera_parent", vResource);
vModel.visibility = symbol("none");
vModel.addModifier(symbol("keyframePlayer"));
vModel.addChild(v3DSprite.camera, symbol("preserveParent"));

You can use a similar technique to add the keyframePlayer modifier to visible models.

Playing a motion

The following code adds to the model a custom motion that was created in a third-party 3D design application and

exported with the current 3D world:

-- Lingo syntax
vMotion = v3DMember.motion(4)
vMotionName = vMotion.name
vModel.keyframePlayer.play(vMotionName, TRUE)
//JavaScript syntax
vModel = v3DMember.getPropRef("model", 10);
vMotionName = vMotion.name;
vModel.getPropRef("keyframePlayer", 1).play(vMotionName, true);

This code sets the motion to loop.

Pausing playback of motions

The following code adds to the model a custom motion that was created in a third-party 3D design application and

exported with the current 3D world.

-- Lingo syntax
vModel.keyframePlayer.pause()
//JavaScript syntax
vModel.getPropRef("keyframePlayer", 1).pause();

The code sets the motion to loop.

Removing all motions from a model

To remove a motion from the playList before it is played, use removeLast().

276ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

-- Lingo syntax
ii = vModel.keyframePlayer.playList.count
repeat while ii
 vModel.keyframePlayer.removeLast()
 ii = ii - 1
end repeat
// JavaScript syntax
vCount = vModel.getPropRef("keyframePlayer", 1).playList.count;
for (ii=0;ii<vCount;ii++) {
 vModel.getPropRef("keyframePlayer", 1).removeLast();
}

Looping a motion between custom limits

The following code below will add member("3D").motion(4) to the playList of vModel:

-- Lingo syntax
vLooped = TRUE
vStartTime = 500
vEndTime = 600
vRate = 0.1
vOffset = 250
vModel.keyframePlayer.queue(vMotionName, vLooped, vStartTime, vEndTime, vRate, vOffset)
// JavaScript syntax
vLooped = true;
vStartTime = 500;
vEndTime = 600;
vRate = 0.1;
vOffset = 250;
vModel.getPropRef("keyframePlayer", 1).queue(vMotionName, vLooped, vStartTime, vEndTime,
vRate, vOffset);

When it is this motion's turn to play, it will start playing 250 milliseconds from the beginning, then play up to

millisecond 600, and then continue to cycle between 500 and 600. It will play at one-tenth of its normal speed.

For information on blending motions, see autoBlend, blendTime, and blendFactor.

Bones animations

The bonesPlayer modifier shares many of its properties, methods and events with the keyframePlayer modifier. See

“Pre-defined animations” on page 270 for details.

Bones animations require a particular internal structure in the models they are applied to. If you attempt to apply a

bones animation to a model which does not have the correct bone structure, it will fail silently.

Bones animations cannot be created in Director. You must use a third-party 3D design application, then export the

3D world and the animations as a W3D file. Creating bones animation in a 3D modeling application can be complex,

but it results in more natural-looking movements.

For bones animation, each motion contains a list of tracks, and each track contains the keyframes for a particular bone.

A bone is a segment of the skeleton of a model. For example, track 14 of the motion named Run can be named

RtKneeTrack and move a bone named RtKnee. These names are defined in the 3D modeling application.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7590.html

277ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Bones

When you import a W3D file containing bones animation, each bone may appear as a separate model. To discover

which models are the bones of a particular modelResource, you can use modelResource.getBoneID(), using the name

of each model in turn. If the result is a non-zero integer, the named model is a bone in the modelResource.

You can work out the parent-child hierarchy of bones by checking the parent of each of the bone models.

To see an example of this, download and launch the movie MotionTest.dir. Watch the output in the Message window

as the movie launches.

The MotionTest.dir movie contains a very basic bones animation

Bone properties

• model.bonesPlayer.bone[boneId].transform indicates the transform of the bone relative to the parent bone.

You can find the boneId value from the name of the bone by using the modelResource.getBoneID() method of the

model resource.

You can read the properties of a bone's transform, but you cannot set any of its properties directly. You can however

replace the bone's transform with a standard transform which you can then control.

When you set the transform of a bone, it is no longer controlled by the current motion, and cannot be returned to

the control of the motion. To end manual control, you can use model.bonesPlayer.playNext() to remove the bone

from the playList. Manual control will end automatically when the current motion ends. You can experiment with

this in the MotionTest.dir movie

• model.bonesPlayer.bone[boneId].worldTransform returns the world-relative transform of the bone. This

property gives you a means to attach a model to a bone. For example, on every exitFrame, you can set the

transform of a Hat model to the worldTransform of a character's Head bone.

See the MotionTest.dir movie for an example.

Motion mapping

You can create new motions by combining existing motions. For example, a walking motion can be combined with a

shooting motion to produce a walk-and-shoot motion. This is available only with Bones player animations.

See motion.map() for more details.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-721a.html
http://www.adobe.com/support/director/examples/MotionTest.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-721a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a60.html

278ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

update()

You can use model.update() to force a model with bones animation to update without having to wait for the screen to

be rendered. This will ensure that the correct position data is available to your scripts.

Playing a motion

The following code adds to the model a custom motion that was created in a third-party 3D design application and

exported with the current 3D world:

-- Lingo syntax
vMotion = v3DMember.motion(4)
vMotionName = vMotion.name
vModel.bonesPlayer.play(vMotionName, TRUE)
//JavaScript syntax
vModel = v3DMember.getPropRef("model", 10);
vMotionName = vMotion.name;
vModel.getPropRef("bonesPlayer", 1).play(vMotionName, true);

This code sets the motion to loop.

Pausing playback of motions

The following code adds to the model a custom motion that was created in a third-party 3D design application and

exported with the current 3D world:

-- Lingo syntax
vModel.bonesPlayer.pause()
//JavaScript syntax
vModel.getPropRef("bonesPlayer", 1).pause();

This code sets the motion to loop.

Removing all motions from a model

To remove a motion from the playList before it is played, use removeLast().

-- Lingo syntax
ii = vModel.bonesPlayer.playList.count
repeat while ii
 vModel.bonesPlayer.removeLast()
 ii = ii - 1
end repeat
// JavaScript syntax
vCount = vModel.getPropRef("bonesPlayer", 1).playList.count;
for (ii=0;ii<vCount;ii++) {
 vModel.getPropRef("bonesPlayer", 1).removeLast();
}

Looping a motion between custom limits

The following code adds member("3D").motion(4) to the playList of vModel:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6bbe.html

279ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

-- Lingo syntax
vLooped = TRUE
vStartTime = 500
vEndTime = 600
vRate = 0.1
vOffset = 250
vModel.bonesPlayer.queue(vMotionName, vLooped, vStartTime, vEndTime, vRate, vOffset)
// JavaScript syntax
vLooped = true;
vStartTime = 500;
vEndTime = 600;
vRate = 0.1;
vOffset = 250;
vModel.getPropRef("bonesPlayer", 1).queue(vMotionName, vLooped, vStartTime, vEndTime, vRate,
vOffset);

When it is this motion's turn to play, it will start playing 250 milliseconds from the beginning, then play up to

millisecond 600, and then continue to cycle between 500 and 600. It will play at one-tenth of its normal speed.

For information on blending motions, see autoBlend, blendTime, and blendFactor.

Collisions

All that you can see in a virtual 3D world are pixels. The models are just the projection of abstract objects onto your

screen. To give these pixels the illusion of solidity, you must prevent them from appearing to intersect with each other.

Collision detection requires testing on each frame whether each moving model has attempted to pass through every

solid model in the scene. In a busy scene, this can require very intensive use of the computer processor. To improve

performance, it is important to limit the number of calculations to those situations where a collision is likely.

Detecting collisions

Director provides a number of ways of detecting collisions between models.

• The #collision modifier manages the detection and resolution of collisions. It was introduced in Director 8.5 and

has not evolved since. It can handle simple collisions that occur between models that are moving relatively slowly

compared to their size. See “Collision modifier” on page 280.

• The simplest way to prevent two models from colliding with each other is to ensure that they never get close enough

to each to touch. See “Custom collision detection” on page 283 for a discussion of some fast techniques.

• When only one model is moving in an otherwise static world, you can cast a ray along the direction of motion of

the moving model to see whether there is another object in its path. You only need to cast a ray when the moving

model changes direction. See “Rays” on page 285 for more details.

• The Ageia Physics Xtra is a high-performance tool that helps developers create 3D worlds in which objects interact.

The Xtra performs calculations to determine the results of collisions, factoring in object properties such as mass,

velocity, and rotation. See “Physics” on page 293 for more details.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7590.html

280ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Resolving collisions

When a collision is detected, you decide what the result of the collision will be. Different situations require different

solutions. Here are some examples.

• An avatar controlled by the user will simply be prevented from passing through a solid object. You may want to

deflect the movement of the avatar so that it moves along the obstacle. See “Sliding along a wall” on page 237 for

more details.

• An avatar that moves over a terrain needs to remain at the surface of the terrain at each step. See “Hugging Terrain”

on page 238 for more details.

• A ball that collides with a wall will rebound and start traveling in a new direction. The impact with the wall may

reduce its speed. See “Bouncing off a wall” on page 291 for more details.

• A ball that encounters a sloping surface may roll down the surface. See “Terrains” on page 319 for more details.

Collision modifier

When you attach the collision modifier to models, it will generate an event when the relative movement of two models

may result in a collision. It gives you the option of stopping the movement of the models at the point near where the

collision would occur.

To test the collision modifier, download and launch the movie Collide.dir.

Set the collision modifier properties and drag the models around. An asterisk appears when a collision is detected.

Collide.dir allows you to set the properties of the collision modifier and visualize collision data.

Adding the collision modifier to a model

The following command adds the #collision modifier to model 2, named “HighImpact”, of the member “3D”:

http://www.adobe.com/support/director/examples/Collide.dir

281ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

-- Lingo syntax
member("3D").model("HighImpact").addModifier(#collision)
put member("3D").model("HighImpact").modifier
 -- [#collision]
// JavaScript syntax
member("3D").getPropRef("model", 2).addModifier(symbol("collision"));
trace(member("3D").getPropRef("model", 2).modifier)
// <[#collision]>

Removing the modifier

You can use the command aModel.removeModifier() to remove the #collision modifier.

-- Lingo syntax
member("3D").model("HighImpact").removeModifier(#collision)
// JavaScript syntax
member("3D").getPropRef("model", 2).removeModifier(symbol("collision"));

Collision properties

Adding the collision modifier to a model gives you access to four properties:

• model.collision.enabled: TRUE or FALSE (TRUE by default). If TRUE, then collisions between this model and other

models will trigger a collision event.

• model.collision.mode: #sphere, #box or #mesh. Determines what form of simplified geometry is used for collision

detection. The default #sphere mode is the fastest and #mesh the slowest.

• model.collision.resolve: TRUE or FALSE (TRUE by default). If TRUE and you attempt to move this model to a position

where a collision is detected with another model, then this model will be moved back in a straight line along its

trajectory to a position where no collision is detected.

• model.collision.immovable:TRUE or FALSE (FALSE by default). Setting this property to TRUE will not prevent you

from moving the model. It simply tells the collision modifier that any movement of this model is to be ignored. To

improve performance, the collision modifier will not check whether any immovable models are in collision with

each other.

Collision events

You can generate a callback when a collision occurs using any of the following methods:

• model.collision.setCollisionCallBack()

• model.registerScript()

• member3D.registerForEvent()

The setCollisionCallBack(aHandler, aCodeObject) method is a shortcut for

model.registerScript(#collideWith,aHandler, aCodeObject). You can use

registerForEvent(#collideAny, aHandler, aCodeObject) to generate a callback whenever any collision is

detected between any two models with the collision.modifier.

collisionData

When a collision is detected, the collision modifier will call any handler that is registered for collision events and send

a collisionData object as a parameter to the call. The collisionData object has four properties.

• collisionData.modelA is one of the models involved in the collision.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7aa4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7209.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7206.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b45fe4e6b011d55854fa1-7ffd.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-73f4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78cd.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c3.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78b9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78b6.html

282ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• collisionData.modelB is the other model involved in the collision.

• collisionData.pointOfContact is the world position of the collision.

• collisionData.collisionNormal is the direction of the collision.

Note: In the Collide.dir movie, this data is displayed below the 3D sprites.

The collisionData object also has two methods:

• collisionData.resolveA() is the direction of the collision.

• collisionData.resolveB() is the direction of the collision.

You can call either of these methods with a parameter of TRUE or FALSE, to override the current

model.collision.resolve property for the model in question.

In the Collide.dir movie, you can select whether these calls are made by toggling the Use Resolve Callback check box.

Testing with Collide.dir

The Collide.dir movie does not display the collision.enabled property. Instead, the collision modifier is removed

if you choose none or #Lingo sphere as the collision.mode.You can visualize the boundingSphere for the both

models, or show a bounding box, to help see why a collision is detected with the different modes. Note that the

bounding spheres may not seem to touch when a collision is detected. This is because only the vertex points shown by

the sphere wire frame are actually on the surface of the sphere. The wires themselves take a shortcut across the interior

of the sphere.

If you set the collision.immovable property for both models to TRUE, then no collisions are detected between them.

If you put the two models in a collision state, and then set collision.immovable to FALSE and

collision.resolve to TRUE for one of the models, then you will be unable to move that model.

Bugs in the collision modifier

The collision modifier does not always report the collision.normal value accurately. To check this, select the Use

Message Window check box. When you do so, the collisionNormal and pointOfContact details are shown in the

Message window. Notice how the collisionNormal value tends to vary unpredictably, and how it tends to align itself

with the world's axes.

The #mesh value for collision.mode is supposed to work on the actual mesh geometry of the model’s resource, but this

is apparently not the case.

You can use a slider to scale the Light model. (Double-click on the slider to reset the scale to 1). Notice that when you

make the Light model bigger, the collision modifier behaves as if you made it smaller and vice versa.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78b1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74fd.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-73d1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-788d.html
http://www.google.co.in/search?sourceid=navclient&ie=UTF-8&rlz=1T4GGLL_enIN386&q=collisionData.resolveB%28%29+adobe+director

283ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

When models are scaled, collisions may be reported incorrectly

Note: There are also other bugs which the Collide.dir movie is not designed to illustrate. These include issues with fast-

moving models, the detection of shallow collisions, and the ability to correctly resolve collisions. In many cases, you will

find that there are better solutions than relying on the collision modifier.

Custom collision detection

In some cases, you can perform collision detection very simply, without the need for any modifiers or xtra extensions.

This article will look at one of these cases. The purpose is to help you to visualize the process of collision detection and

how a collision is resolved.

Collision between two spheres

The simplest case is the detection of a collision between two spheres. Every node has a node.boundingSphere property,

which provides the center and the radius of the smallest sphere that will fit snugly around all the vertices in the node

and in its children. The coordinates and dimensions are given with reference to the world. If a spherical model has no

children, then its boundingSphere gives a perfect description of its own volume.

Here is a handler that will tell whether the boundingSphere of one model intersects that of another.

on SpheresIntersect(aModel1, aModel2)
 vSphere1 = aModel1.boundingSphere
 vSphere2 = aModel2.boundingSphere
 vDistanceBetweenCenters = (vSphere2[1] - vSphere1[1]).magnitude
 vMinimumDistance = vSphere1[2] + vSphere2[2]
 vIntersection = (vDistanceBetweenCenters<vMinimumDistance)
 return vIntersection
end SpheresIntersect

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74c8.html

284ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

To test this handler, you can download the movie Collide.dir. Add a Movie Script in one of the lower-numbered cast

slots, and give it the scriptText above. Now launch the movie and watch the expression below in the Object Inspector.

SpheresIntersect(member("3D").model("Dark"), member("3D").model("Light"))

If you set the movie up to use the #sphere mode of collision detection with the collision modifier and to show the

boundingSphere for both models, you will be able to check that this script has the same level of accuracy as the

collision modifier.

If you delete your script, the Spheres Intersect script in slot 56 will do the same job, and also provide more feedback

on the intersection if there is one.

A simple Lingo script can be more accurate than the collision modifier

Resolving a collision between two spheres

After a collision has been detected between two spheres moving relative to each other, you need to work out where the

initial point of impact had been. If both spheres are moving at a constant speed, then you need to solve a quadratic

equation. To see this done for you, download and launch the movie Vector7.dir. Use the popup menu in the top right

corner to jump to the Point Of Impact marker.

http://www.adobe.com/support/director/examples/Vector7.dir

285ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Finding the point in space and time where two moving spheres will collide

The solid colored circles indicate the starting position of the spheres. The lighter colored circles indicate the position

where the spheres will be at the end of the frame if they did not collide. Click on Show Intersection to see where the

spheres will first come into contact with each other.

The code to calculate this is the FindImpact() handler in the Impact behavior. The code that solves the quadratic is

in the Quadratics movie script.

Rays

Director gives you five techniques for sending a ray into a 3D world, like a laser pointer, to detect what objects can be

found in a given direction from a given point.

• camera.modelUnderLoc()

• camera.modelsUnderLoc()

• member3D.modelsUnderRay()

• physics.rayCastClosest()

• physics.rayCastAll()

The two camera methods (modelUnderLoc() and camera.modelsUnderLoc()) are explained in detail at “Picking”

on page 242. The two physics methods (rayCastClosest() and physics.rayCastAll()) are explained in more

detail in “Ray casting” on page 321.

modelsUnderRay()

This function sends a ray from a given point in the 3D world in a given direction. It returns VOID or a list of models

encountered along the way. The method allows a number of different parameters. For more details, see

member3D.modelsUnderRay(). The syntax discussed here is:

vData = member3D.modelsUnderRay(aPoint, aDirection, aOptionsList)

The options list must be a property list which can have the following properties and values:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7989.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7988.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6e7b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6e7a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html

286ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

[#maxNumberOfModels: <integer>,
 #maxDistance: <positive float>,
 #levelOfDetail: <#simple | #detailed>,
 #modelList: [<model>, ...]]

For example:

[#maxNumberOfModels: 1, #levelOfDetail: #detailed, #modelList:
[member("3D").model("Target")]]

When used with this syntax and the value #detailed for the #levelOfDetail property, the output from the function

is a list of property lists, with the format:

[[#model: <model under the given loc>,
 #distance: <float distance to intersection point>,
 #isectPosition: <vector worldPosition of intersection point>,
 #isectNormal: <vector normal of the face at intersection>,
 #meshID: <integer id of mesh to which the face belongs>,
 #faceID: <integer id of intersected face>,
 #vertices: [<vector>, <vector>, <vector>],
 #uvCoord: [#u: <float>, #v: <float>]], ...]

The #uvCoord property gives you information about which pixel in the texture image was touched by the ray. See

“Mapping a texture to a mesh resource” on page 150 for more details.

Detecting obstacles in the direction of motion

Imagine a world with one moving object: the player's avatar. Imagine an obstacle some distance away from the avatar.

Imagine that the avatar starts moving and keeps traveling in the same direction. In this case, you only need to send out

one ray to know how far the avatar will need to travel before colliding with the obstacle. If you know the speed of the

avatar, you can calculate the time when the impact will occur.

The concept of using a ray to detect collisions for an avatar steered by the user is explained in detail in “Not walking

through objects” on page 222. This article treats the simpler process required to deal with the movement of a model

traveling in a straight line.

To see a very simple game that illustrates the idea, download and launch the movie AirHockey.dir.

The direction of movement of the mouse defines the direction of the invisible ray

http://www.adobe.com/support/director/examples/AirHockey.dir

287ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The Air Hockey behavior creates a white model named “Puck”. You can drag the Puck model around. (There is no

collision detection while you are dragging it). Release the mouse button while you are dragging the puck to throw it

inside the blue tray area. If your throw is successful, the puck will collide with the walls and bounce back.

To see how to drag the puck around, see “Dragging” on page 250. To see how to make the puck move after it has been

released, see “Linear motion” on page 261. To discover what happens when the puck collides with the barrier, see

“Bouncing off a wall” on page 291.

Using modelsUnderRay()

In the AirHockey.dir movie, the movement of the puck is controlled by the Throw Model in Y Plane behavior. When

you throw the Puck model, the mThrow() handler in that behavior calculates the current position of the Puck and its

direction of motion. See Linear motion for details.

Below is a simple handler that takes this information, in the form of the aPosition and aDirection parameter and

returns information about the point where the Puck will collide with one of the barriers. The handler also needs

information on which 3D member contains the world (aMember), and which model is used for the barrier

(aBarrierModel).

on GetImpactData(aMember, aPosition, aDirection, aBarrierModel)
 vRayInfo = [:]
 vRayInfo[#maxNumberOfModels] = 1
 vRayInfo[#levelOfDetail] = #detailed
 vRayInfo[#modelList] = [aBarrierModel]
 vImpact = aMember.modelsUnderRay(aPosition,aDirection,vRayInfo)
 vImpactData = vImpact.getLast() -- VOID if no barrier detected
 return vImpactData
end GetImpactData

The output is either VOID (if you released the Puck outside the blue tray), or a property list containing three values that

are important for treating the collision.

• #distance: a floating point distance to the barrier.

• #isectPosition: the point on the barrier where the impact will occur.

• #isectNormal: a unit vector pointing out at right angles from the barrier. This will be used to calculate the

direction in which the Puck will travel after it bounces.

In the AirHockey.dir movie, the mGetImpact() handler also calculates the time of the impact from the value for

#distance. It will use the value for #isectPosition as the starting point for the trajectory after the Puck bounces. It

will use the value for #isectNormal to calculate the direction of the trajectory after the bounce. See “Bouncing off a

wall” on page 291 to know how to treat of the bounce.

Additional examples

You can find other examples of collision detection with rays in the movies associated with the following articles:

• “Not walking through objects” on page 222

• “Moving to a given location” on page 225

• “Third-person camera” on page 230

• “Hugging Terrain” on page 238

• “Moving to a new zone” on page 240

288ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

2D barriers

Using modelsUnderRay() to send a ray out into 3D space can be costly in terms of the computer processing time. This

article describes ways to keep the processing time to a minimum.

To detect a model in its path, a ray needs to perform the following steps.

• For each model, check if its boundingSphere is in the line of fire of the ray.

• If so, for each face in the model, starting with the nearest, check whether its normal is facing towards the ray.

• If so:

• Calculate where the ray passes through the infinite plane which contains the face.

• Calculate if the point of intersection with the plane lies within the face.

You can reduce the time it takes to calculate the result of a ray cast in a number of ways.

• Perform the ray cast on as few models as possible. To do this, use the #modelList option in the modelsUnderRay() call.

• Use models with as few faces as possible.

• Indicate the maximum distance at which a result is meaningful to allow the ray to ignore any models whose

bounding sphere is out of range.

The graphic quality of a scene often depends on the details. Details require many models and a high polygon count.

Rather than performing a ray cast on the scene that the user can see, consider creating a second scene that remains

invisible to the user, specifically for raycasting. This invisible scene can use vastly simplified geometry.

Simplified collision geometry

To see how to create such a simplified scene, download and launch the movie AirHockey.dir.

At the foot of each wall, a thin ribbon mesh acts as a collision barrier

Note: In the AirHockey.dir movie, for clarity, the barriers are visible in the world. To improve performance, you can

remove the barriers from the world. When a modelsUnderRay() call is made, (see 25.05.03 - Rays) the models to detect

can be explicitly added to the #modelList options parameter. The models need not be in the world at all. If they are not

in the world, the Director playback engine will not waste any time trying to display them.

In this movie, the invisible barrier models are created from vertex data stored in a vectorShape member. You may

prefer a different system for defining the floor plan of the models.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html
http://www.adobe.com/support/director/examples/AirHockey.dir
/XML/en-us/Products/Director/11.5/Beginners/dir_controlling_action_ca.xml#WS287f927bd30d4b1f4e4b40e71304008b6ee-7f45

289ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The floor plan for the barrier models can be stored in a vectorShape member

The barriers are designed with gently rounded interior corners. This makes it easy and natural to steer an avatar

automatically out of a corner. See “Sliding along a wall” on page 237 for more details.

You may prefer to use fewer points than that are used here. Fewer points in the corners lead to fewer polygons in the

final mesh. More points leads to smoother turning in corners.

You can find two handlers that take the vectorShape vertexList data and convert it to a list of 3D vectors in the Air

Hockey behavior. They are called mGetVertexList() and mConvertTo3D().

Building the barrier mesh

The barrier mesh is built on the fly. Here is a CreateMesh() handler:

290ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on CreateMesh(a3DMember, aVertexList, aName, aHeight)
 vFaceList = []

 vCount = aVertexList.count
 repeat with ii = 1 to vCount
 vVertex = aVertexList.getAt(ii).duplicate()
 vVertex.y = aHeight
 aVertexList.append(vVertex)

 if ii - 1 then
 vFaceList.append([ii, ii - 1, ii + vCount - 1])
 vFaceList.append([ii, ii + vCount - 1, ii + vCount])

 else
 vFaceList.append([ii, vCount, vCount * 2])
 vFaceList.append([ii, vCount * 2, vCount + 1])
 end if
 end repeat

 vNormalCount = 0 -- Set by generateNormals.build()

 vMeshResource = a3DMember.newMesh(\
aName, \
vFaceList.count, \
aVertexList.count, \
vNormalCount \
)
 vMeshResource.vertexList = aVertexList
 vCount = vFaceList.count
 repeat with ii = 1 to vCount
 vMeshResource.face[ii].vertices = vFaceList[ii]
 end repeat

 vMeshResource.generateNormals(#flat)
 vMeshResource.build()

 return vMeshResource
end CreateMesh

This handler accepts four parameters:

• a3DMember: the 3D cast member that contains the world

• aVertexList: a list of vectors describing a shape in the horizontal plane

• aName: a unique string that is not used for any existing modelResource

• aHeight: a positive number

The handler doubles the length of aVertexList by adding a new set of points that are aHeight units above the original

set. It also creates a series of face definitions.

The following illustration shows a low-polygon barrier that can be placed around a building to prevent access to it:

291ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Eight vector positions in aVertexList are extruded to make 16 vertex points, linked together as 16 faces

The figures in green represent the vectors used in aVertexList at the moment the CreateMesh() handler is called.

The figures in blue represent the additional 8 points that are added.

Notice the order in which the original vertices are defined. Turning clockwise will create a mesh that faces outwards

for a barrier that prevent entry. Turning counter-clockwise will create a mesh that faces inwards for a barrier that

prevents exit.

This mesh is never intended to be seen. All that matters is the geometry. There is no need to provide colorList or

textureCoordinate information.

Bouncing off a wall

The behavior of an object after a collision depends on the object, and in particular, how much energy is restituted to

the object after the collision. When an inelastic object, such as a wet rag, collides with a solid object, such as a wall, it

loses all its energy and simply drops to the ground. A wet rag has very low restitution.

An elastic object has high restitution. When an elastic object, such as a ball, collides with a wall, two things happen:

• The ball loses some of its energy to the wall. This energy is usually in the form of heat and sound. As a result, the

speed of the ball immediately after impact is less than it was immediately before the impact. The difference in speed

is determined by the restitution of the two colliding objects.

• The direction of motion is reflected in the wall. The angle of incidence is equal to the angle of reflection.

292ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The change in trajectory of a ball as it bounces off a wall

This article shows how to calculate the movement of a round object after collision with a flat surface. A round object

strikes a flat surface at only one point. A collision between objects with more complex geometry may result in many

separate impacts, each of which will have an effect on the final result. In most cases, the rebounding object will start to

spin. Treatment of more complex collisions is best handled by the Physics simulation provided by the Dynamiks xtra

extension. See “Physics” on page 293 for more information.

To see an example of a round object rebounding of a flat surface, download and launch the movie AirHockey.dir.

After you throw the Puck model, it will slow down gradually and bounce off the walls

To see how to drag the Puck model around, see “Dragging” on page 250. To see how to make the Puck move after it

has been released, see “Linear motion” on page 261. To see how to detect where and when the next collision with a

barrier will occur, see “Rays” on page 285.

http://www.adobe.com/support/director/examples/AirHockey.dir

293ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Calculating the new speed and direction

The following handler, Bounce(),calculates the new speed and direction of an object after a simple collision:

on Bounce(aSpeed, aDirection, aImpactNormal, aRestitution)
 vNewSpeed = aSpeed * aRestitution
 vCosine = -aDirection.dotProduct(aImpactNormal)
 vSine = (1 - vCosine * vCosine)
 vVertical = aDirection.crossProduct(aImpactNormal)
 vPerpendicular = aImpactNormal.crossProduct(vVertical)
 vPerpendicular = vPerpendicular.getNormalized() * vSine
 vNewDirection = aImpactNormal * vCosine + vPerpendicular
 return [#speed: vNewSpeed, #direction: vNewDirection]
end Bounce

The handler accepts four parameters:

• aSpeed: a non-negative floating-point number in world units per millisecond

• aDirection: a unit direction vector, indicating the direction of travel

• aImpactNormal: a unit direction vector at right angles to the collision surface

• aRestitution: a floating-point number between 0.0 (all energy is lost) and 1.0 (all energy is returned to the

bouncing object)

Note that aDirection and aImpactNormal will be pointing in opposite directions if the collision is exactly at right

angles to the wall. In this case, the new direction after the bounce will be the same as aImpactNormal, or -

aDirection.

You can find similar code in AirHockey.dir movie. Look in the Vector Mathematics script and in mBounce() handler

of the Throw Model in Y Plane behavior.

The handler uses both trigonometry and vector mathematics. In particular, it uses the following mathematical

operations:

• The dotProduct() of two unit vectors is equal to the cosine of the angle between them

• The crossProduct() of two vectors is a vector at right angles to both vectors.

• aVector.getNormalized() returns a vector with the same direction as aVector but with a magnitude of 1.0. The

output vector has a length of one unit.

For more information on vector mathematics, see “Vector methods and operations” on page 364.

Physics

The Physics Xtra is a high-performance tool that helps developers create 3D worlds in which objects interact. The Xtra

performs calculations to determine the results of collisions, factoring in object properties such as mass, velocity, and

rotation. Forces can be applied, and objects can be connected to each other with constraints. The constraints available

are six degrees of freedom joints, linear joints, angular joints, and spring joints.

Additionally, terrains and raycasting are supported. A terrain is similar to a bumpy plane that is finite in two

dimensions and defines an elevation along the third. Raycasting is the mechanism of collision detection with rays.

Raycasting can be done against all types of rigid bodies and terrains.

With this Xtra, developers can focus on game play and user interaction, and not worry about creating a real-time

physics engine with Lingo scripts.

294ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The Physics (Dynamiks) Xtra is a fully integrated rigid body physics simulation engine for Adobe® Director®. The

dynamics Xtra is supported on Windows and Macintosh platforms.

You can use the Dynamiks xtra extension to control the interactions between the models in your 3D in a simulation

of the laws of classical mechanics.

• You can create rigidBody objects with properties such as mass, friction and elasticity (or restitution). The

models associated with these rigidBody objects will behave as if they were solid. See “Rigid bodies” on page 307

for more details.

• You can choose what collision geometry these rigidbody objects will use. In certain cases, a simple sphere or

bounding box will give you enough control. In other cases you can provide a convex or concave hull as a proxy

shape, or construct concave shape from multiple convex shapes. See “Rigid body proxies” on page 317 for more

details.

• A terrain is an extension of the concept of the rigidbody. A terrain provides a surface that rigidBody objects

cannot penetrate. A rigidBody placed below the surface of a terrain will automatically move to the surface. See

“Terrains” on page 319 for more details.

• You can detect rigidbody objects using ray casting. See “Ray casting” on page 321 for more details.

• You can control collisions between rigidBody objects, and between rigidBody objects and terrain objects on

an individual basis. You can register a handler to be called every time a collision occurs. See “Collisions” on

page 279 for more details.

• You can create constraints between rigidBody objects, so that they move together or mutually limit each other's

movements. You can also create a constraint between a rigidBody object and a fixed point. Constraints can be

angular or linear or springs. See “Joints and springs” on page 330 for more details.

• A linear constraint allows movement in all directions, but constrains the orientation of the object to a given axis

angle. See “D6Joint method and properties” on page 343 for more details.

• An angular constraint allows the object to rotate freely, but constrains its movement in space. See 25.06.13 -

Angular joint properties for more details.

• You can create virtual springs that connect two rigidBody objects, or that connect a rigidBody object to a fixed

point. A spring will resist extension, compression or both, and will try to return to a rest length. See “Spring

properties” on page 336 for more details.

• You can create sophisticated joints that connect two rigidBody objects, or that connect a rigidBody object to a

fixed point. These six-degrees-of-freedom joints can control the freedom of movement of the objects relative to

each other for six different motions. They can also be used to drive a linear movement or a rotation. See “D6Joints”

on page 338 for more details.

• You can create soft objects, using cloth. See “Cloth” on page 348 for more details.

• You can use a character controller to manage the movement of characters within a scene. See “Character controller”

on page 352for more details.

Physics member

To create a physics simulation you need a Physics cast member. To insert a new Physics member into your cast library,

choose Insert > Media Element > Physics.

A Physics member acts as an interface with the Dynamiks xtra extension, and it stores the properties used by a

particular 3D member. Do not drag the Physics member onto the Stage or into the Score window. If you do, it will

simply appear as a red rectangle with a red diagonal cross in it, which brings no visual enhancement to your movie.

dir_controlling_action_ca.xml#WS287f927bd30d4b1f4e4b40e71304008b6ee-7ef9
dir_controlling_action_ca.xml#WS287f927bd30d4b1f4e4b40e71304008b6ee-7ef9

295ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Use Lingo or JavaScript code for all your interactions with a Physics member.

For details on how to set up a Physics member, see “Physics world” on page 298.

Controlling a physics simulation

Creating a credible physics simulation in a virtual 3D world means learning how to use a large number of properties

and methods, and then letting the physics simulator take control.

The physics simulator does exactly what you tell it to do. It takes the initial conditions that you provide it with, and

calculates what the virtual world will look like in a fraction of a second's time. It then takes that new situation, and

performs the same calculations again. It repeats this process many times a second.

In the example movies provided elsewhere in this documentation, all interactions are controlled by visible code from

Lingo or JavaScript handlers. If the code behaves in a way that you did not expect, you can add a breakpoint to a script,

and step through it line-byline. You can follow the values of different properties in the Object Inspector. You can check

at each point where there is a difference between your expectations and the actual outcome.

In a physics simulation, provide little direct access to the process. You control the initial conditions, and from time to

time your code reacts to particular situations when they arise. For most of the time, you rely on the hidden code of the

Dynamiks xtra extension to make the events in the world evolve in a coherent manner.

Learning to use the Dynamiks xtra means understanding the principles on which it runs. This section of the

documentation is designed to help you reach that understanding. Many of the demo movies are designed to allow you

to explore the different settings for a particular Physics object.

Simulations and shortcuts

Before exploring what a physics simulation can do, it is useful to consider how it is different from the real world.

In the real world, time appears as a constant flow. In a reel of film projected in a movie theater, each frame a separate

image of the state of the world at a given point in time. If you watch a film frame by frame, the objects in the world

jump from one place to another. The illusion that the objects are moving fluidly is generated in our brains.

A 3D simulation does not mimic the real world accurately. It takes advantage of the way our brains process

information, and takes shortcuts. Most of the time the results appear natural, but the shortcuts can lead to strange

behavior. Here are some points that you need to consider:

• A Physics simulation uses discrete steps to simulate movements.

• A Physics simulation uses unnaturally perfect starting situations.

• There are only a finite number of floating-point numbers that a Physics simulation can use to control actions and

interactions. This can lead to rounding errors that accumulate over time, or to situations where the values go out

of range.

• A Physics simulation uses invisible agents to apply forces and impulses.

See “Physics world properties” on page 300 for an interactive illustration of these concepts.

A Physics simulation is designed to provide interactions between independent objects. If you want to create a

mechanism where the movement of different objects needs to be locked precisely together, you may find it easier to

write your own custom code.

296ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Step-wise simulations

In a 3D world, time does not flow. It jumps in discrete time intervals from one frame to the next. In a physical

simulation within a 3D world, many calculations are made between each frame to calculate the position of objects in

the world in the next frame.

To speed up the calculations, approximations are used. For example, imagine an object that is slowing down to a stop.

In the real world (assuming perfect conditions), the object's speed will decrease at regular rate. A 3D simulation will

behave as if the speed of the object remained constant between each update, and then dropped suddenly at the next

update time.

Changes in a 3D simulation occur in steps

Below is an illustration of the idealized movement of a ball thrown into the air (red curve) and the simulated movement

of a virtual ball, calculated at discrete intervals of time.

A perfect curve and an approximation created from straight lines

In most cases, the results will appear similar to what would happen in the real world. A slight deviation from the

theoretical result is perfectly acceptable. However, in some circumstances, this step-wise simulation can lead to

unnatural behavior.

297ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

An ideal world?

In the real world, nothing is perfect. In a 3D physics simulation, everything is deterministic. A real-world object may

start to spin as it falls, no matter how carefully you place it. In a 3D physics simulation, the object will only start to spin

if you explicitly tell it to.

In the real world, a falling object will be deformed when it strikes the ground. The precise nature of that deformation

at that moment in time will make it bounce in a particular way. In a 3D physics simulation, an object has an idealized

shape, and it will bounce in an idealized way. A pointed object may bounce on its point and maintain its balance for

an unnatural number of times.

However, in Director 11.5, the Dynamiks xtra does not allow you to reproduce exactly the same effect every time with

exactly the same starting conditions. For example, it will not reproduce the same shot in a billiards game twice in a

row. If you need perfect reproducibility (for example, to play a multiuser billiards game, with the same results on both

users' computers), you need to write your own custom solution.

Iterative processes

A 3D simulation repeats the same calculations over and over, with the result of each calculation based on the outcome

of the previous one. If the values that you set for the different parameters of your 3D world are carefully chosen, the

simulation will remain stable. If the parameters are incompatible with each other and with the scene that you are

creating, then the simulation may become chaotic. See more details here.

This theory is particularly important if you are using a large scale for your scene. The Physics simulator works well

when gravity is near to vector(0, -9.81, 0) (for scenes with a vertical yAxis) or vector(0, 0, -9.81) (for scenes

with a vertical zAxis). This implies that one world unit is equivalent to one meter.

A camera cannot see closer than one world unit away. If you have a scene where you need to get as close as an inch or

a centimeter away from an object, you will need to increase the scale of everything in the world. This means scaling

gravity, so that it represents a realistic value in world units.

If you create a scene where one world unit represents an inch or a centimeter, you will need to use a value for gravity

in the range -380.0 to -981.0. Before embarking a project at this scale, test whether the interactions that you want to

create will be stable with a value for gravity in this range.

Invisible forces

In the real world, you can often tell when a force is acting on a body. You can feel and hear the wind blowing, or you

can hear an engine revving, or you use your own muscles to apply the force.

When you apply a force or an impulse or set a velocity in a Physics simulation, you want to make sure that the value

and the direction that you are setting are correct. However, the data you use to do this is abstract: a mathematical

vector. This makes it complicated to debug projects that include physics simulations.

Spending a couple of hours creating a movie of your own to test one isolated aspect of a Physics object is often time

well spent. If you have any difficulty visualizing a concept, or have problems with getting part of a Physics scene to

work the way you expect, create a simple test movie. You can use the demo movies from this section as a starting point or

as inspiration.

http://en.wikipedia.org/wiki/Chaos_theory

298ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Physics world

Before you can use a Physics cast member to simulate a physical world, you need to initialize the cast member. To do

this, you need to call physicsMember.init(). To get the simulation to run, you need to call physicsMember.simulate()

once per frame.

Initialization

The init() command takes five parameters:

• The 3D cast member which contains the scene to be simulated

• A scalingFactor vector (whose value is ignored in Director 11.5)

• A timeStepMode, whose value may be #automatic or #equal.

• A timeStep, whose value is ignored if you choose #automatic for the mode. If you want to use the #equal mode

with the same results as if you were using the #automatic mode, you can use 1.0 / _movie.frameTempo for the

timeStep.

• The number of subSteps to use between each screen update. More subSteps create more realistic simulations, but

use more processing time. A recommended value for this parameter is 5.

The following lines of code initialize the Physics member named "Physics" to use the 3D member named “3D” for a

simulation in real time:

-- Lingo syntax
vPhysics = member("Physics")
v3DMember = member("3D")
vScale = vector(1, 1, 1) -- necessary but ignored
vMode = #automatic
vTimeStep = 1.0 / _movie.frameTempo -- ignored in this case
vSubSteps = 5
vPhysics.init(v3DMember, vScale, vMode, vTimeStep, vSubSteps)
// JavaScript syntax
vPhysics = member("Physics");
v3DMember = member("3D");
vScale = vector(1, 1, 1); // necessary but ignored
vMode = symbol("automatic");
vTimeStep = 1.0 / _movie.frameTempo; // ignored in this case
vSubSteps = 5;
vPhysics.init(v3DMember, vScale, vMode, vTimeStep, vSubSteps);

timeStepMode

The following are the two possible values for timeStepMode.

• #automatic: In this mode, the Physics simulation calculates how much time has elapsed since the last update, and

moves the simulation forward by that amount of time. This mode is easier to work with, but it may break down if

there are long interruptions between updates. For example, if the user switches to another application and back, or

if a lengthy process in the movie itself monopolizes the computer processor.

• #equal: In this mode, the Physics simulation advances by the same time interval on every update. If the timeStep

is equal to the duration of a Director frame (1.0 / _movie.frameTempo), then the result is almost equivalent to

using the #automatic mode with better recovery after long interruptions. If the timeStep is significantly different

from the duration of a Director frame, then the animation may seem to run too fast or too slow. In particular, if

your movie is unable to play at the expected frame rate on a slow machine, the entire scene may update slowly.

http://www.google.co.in/search?sourceid=navclient&ie=UTF-8&rlz=1T4GGLL_enIN386&q=physicsMember.init%28%29+adobe+director
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f59.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67d7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f61.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f62.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f5f.html

299ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

To compare the differences between #automatic and #equal timeStep modes, download and launch the movie

TimeStepMode.dir. You may also want to use the fpsMeter MIAW tool, to show the actual frame rate on a real-time

basis. See “Performance” on page 387for instructions on how to install this tool.

A timeStepMode of #equal handles interruptions better than #automatic

The TimeStepMode.dir movie shows two versions of the same simulated scene side by side. The scene simulates a ball

the size of a basketball bouncing after it is dropped from the height of a basketball net.

Try clicking the Interruption buttons. Both modes will freeze during the interruption. The #automatic

timeStepMode simulation will try to catch up after the interruption. Depending on the timing and duration of the

interruption, it may lose control of the simulation altogether. (If this happens, click the Restart button). The #equal

timeStepMode scene will continue the simulation from the point at which it was interrupted.

Try varying the _movie.puppetTempo by dragging the Tempo slider. Notice how the #automatic timeStepMode

simulation will adjust well to the new frame duration, so long as the frame rate does not drop too low. The pace of

action in the #equal timeStepMode scene will change as the frame rate changes.

timeStep

To work around this drawback of the #equal timeStepMode, you can change the value of timeStep on each frame.

See “simulate()” on page 299 for more details.

simulate()

To get the Physics simulation to run, you need to call physicsMember.simulate() once per frame. The best event

handler to use for this is on enterFrame. See “Using frame events wisely” on page 397 for more details on this event

handler.

You can make the #equal timeStepMode run smoothly, even when the frame rate fluctuates by altering the value of

timeStep to take into account the elapsed time. To avoid the disadvantages of the #automatic timeStepMode, you

can ignore long interruptions.

The on enterFrame() handler below sets the value of member("Physics").timeStep to the number of seconds

since the last update, but it ensures that this value never goes above 0.1. In other words, it ignores any interruptions

longer than 100 milliseconds. If the movie's frame rate remains above 10 frames per second (or 100 milliseconds

duration per frame), then the Physics simulation will adapt itself smoothly to any changes in tempo.

http://www.adobe.com/support/director/examples/TimeStepMode.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f59.html

300ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

property pLastUpdate
on enterFrame(me)
 vMS = the milliseconds
 vElapsed = vMS - pLastUpdate
 pLastUpdate = vMS
 vTimeStep = min(vElapsed / 1000.0, 0.1)
 member("Physics").timeStep = vTimeStep

 member("Physics").simulate()
end enterFrame

In the TimeStepMode.dir movie, you can test the efficiency of this technique by checking the Adjust TimeStep check box.

Physics world properties

A newly initialized Physics world has no gravity, and all its other properties are set to minimum values. A Physics

world has eight properties whose values can be modified at any time. These values act as defaults for all rigidBody

objects for which no value has been set for these properties.

• gravity (cannot be set independently on individual objects)

• restitution

• friction

• linearDamping

• angularDamping

• sleepThreshold

• sleepMode

• contactTolerance

To explore the properties of a Physics world, download and launch the movie FirstWorld.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-749c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f6a.html
http://www.google.co.in/search?sourceid=navclient&ie=UTF-8&rlz=1T4GGLL_enIN386&q=friction+adobe+director
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f4c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f46.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f65.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f64.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67dd.html
http://www.adobe.com/support/director/examples/FirstWorld.dir

301ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

A simple Physics world with default values for all parameters

Use the various sliders and buttons in the FirstWorld.dir movie to test what happens when you modify the values for

these properties.

Apart from gravity, every rigidBody in the Physics simulation can have its own values for the properties illustrated

in the FirstWorld.dir movie. (See “Rigid body properties” on page 311). The values that you set for these properties

will apply to all rigidBody objects and terrains for which you have not explicitly set their own values.

gravity and dimensions

The value that you use for gravity depends on the dimensions of your models. In the FirstWorld.dir movie the Cube

has a length, width and height of 1 unit. If you consider 1 unit to be 1 meter, then setting a gravity to vector(0, -10,

0) will give you a realistic simulation. If you consider 1 unit to be 1 foot, then you can use vector(0, -32, 0). Click

on the M and FT sprites just beneath the gravity slider to use more scientifically precise values.

To simulate gravity on earth, use a value that is about 5 to 6 times the height of an average-sized human character,

as measured in world units. (This assumes that you are using the #automatic mode for the simulation).

Unless you have a non-zero value for gravity, friction will have no effect on objects lying on top of one another. If

you alter the value for gravity, then the effect of friction will also change. To test this, click the Push Cube button.

Click the Friction slider bar, to set a non-zero value for friction, then click the Gravity slider to set a negative value

for gravity. Only after gravity has been set will the Cube start to react to friction.

restitution

Restitution defines how much energy is returned to an object after it collides with another. The overall result depends

on the restitution values for both bodies. Altering the value in the Restitution slider will affect both the Cube and the

Ground. You can set the restitution value for each object separately. This command will set the restitution of the first

rigidBody named “Ground” to 0.42.

302ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

-- Lingo syntax
member("Physics").getRigidBody("Ground").restitution = 0.42
// JavaScript syntax
member("Physics").getRigidBodies()[1].restitution = 0.42;

Testing how the Cube bounces when the value of its restitution changes

Test what happens when you alter the restitution of the Ground and the Cube rigidBody objects separately to get a feel

of how this property works.

Note: Setting restitution to its maximum value of 1.0 can lead to rounding errors where the energy of a bouncing

object actually increases. Be cautious of setting restitution above 0.95.

friction

Friction depends on the force with which two objects are pressed together. To test this, set a non-zero value for both

gravity and friction, and then click the Push Cube button. You can see that modifying either gravity or friction

will have an effect on the behavior of the Cube.

303ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Friction makes the Cube roll over and over, like a gaming dice, as it slows down

Friction affects both linear movement and angular movement. Try the same experiment using the Spin Cube button.

linearDamping

Damping is similar to friction in some ways, and different in others. the following are the ‘damping’ properties:

• linearDamping only affects linear movement

• angularDamping only affects angular movement.

The value of linearDamping determines how much energy is removed from an object moving through space, on every

step. Like friction, a non-zero value for linearDamping will slow the object down. However, it is not dependent on

any contact with another surface, and so it is not dependent on gravity. While friction can make an object roll on a

surface, linearDamping will have no effect on its rotation.

To test this, do the following:

1 Restart the FirstWorld.dir movie.

2 Set a fairly high value for linearDamping.

3 Click on Lift Cube.

4 Deselect the Reset Cube check box so that the Cube will remain suspended in mid air.

5 Click the Push Cube button.

In zero gravity, the Cube will float above the ground, and come to rest some distance away.

304ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

linearDamping removes linear momentum from an object moving through space

AngularDamping

Angular damping has a similar effect as linear damping, except that it affects rotation only. To test, click the Spin Cube

button. Setting a non-zero value for angularDamping will make the rotation of the Cube slow down and eventually

stop. (Altering the value for gravity will not have any effect).

angularDamping removes angular momentum a rotating object

sleepThreshold

When you create a rigidBody, you can choose to make it #dynamic. See “Rigid bodies” on page 307 for more details.

For each dynamic rigidBody, the Physics simulation will check for possible interactions between it and every other

object. The simulation will then update the dynamic rigidBody's position on every frame. In a scene with many

objects, this can lead to a colossal number of calculations on every frame. Too many calculations will adversely affect

performance.

At any given time, many dynamic objects may not be moving. They may be struck by another moving object, but they

will not themselves strike any non-moving objects. You can instruct the Physics simulation to consider that these

objects are sleeping.

305ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Here is an experiment to test this:

1 Type the following command in the Message window, but do not execute it yet.

member("Physics").getRigidBody("Cube").isSleeping = TRUE

2 Launch the FirstWorld.dir movie.

3 Set a very low negative value for gravity or a fairly high value for restitution.

4 Click the Lift Cube button.

5 In the Message window, execute the command you typed earlier.

If you act quickly enough, you will be able to freeze the Cube in mid air.

The sleepThreshold property allows you to tell the Physics simulation when to consider that an object has stopped

moving, and that it must start sleeping. Setting it to a non-zero value will mean that all objects that are affected by

friction, linearDamping or angularDamping will eventually start sleeping.

The Physics Simulation behavior in the FirstWorld.dir movie checks the isSleeping property of the Cube

rigidBody on every frame. When this value becomes TRUE, it checks the Cube Is Sleeping check box. You cannot

interact with this check box button directly.

Be careful about setting the value too high because if the value is high, the objects can freeze in mid movement. The

most efficient value will depend on what length a world unit represents in the real world, and on the value of mass

property for dynamic rigidBody objects.

An exaggerated value of sleepThreshold can make objects go to sleep in unnatural positions

The value of sleepThreshold is zero by default. This means that, by default, no dynamic rigidBody objects ever

sleep.

To test this, create a Lingo Movie Script and paste the following scriptText into it:

http://www.adobe.com/support/director/examples/FirstWorld.dir

306ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on testSleeping()
 vValue = 1.0
 vDamping = 0.5
 vSleepValue = 0.0

 the floatPrecision = 14
 repeat while vValue > vSleepValue
 vValue = vValue * vDamping
 put vValue

 if _key.keyPressed(SPACE) then
 exit
 end if
 end repeat

 the floatPrecision = 4
end testSleeping

From the Message window, execute the command below:

testSleeping()

Press the space bar when you are bored of seeing the Message window print out strings of zeros.

sleepMode

The sleepMode property can take one of two values:

• #energy

• #linearVelocity

The effect will be similar in both cases if you rely only on friction to reduce the speed of objects.

However, if you use linearDamping or angularDamping, you will see different effects for objects that move through

space and objects that rotate. Choosing #linearVelocity will bring objects moving through space to a halt when

their speed falls below the given threshold, but will allow objects that rotate to keep spinning even at very slow speeds.

To test this, set up the world properties as shown in the screenshot below:

Comparing #energy and #linearVelocity for sleepMode for linear and angular motion

1 Choose a high value for angularDamping, linearDamping and sleepThreshold.

307ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

2 Click the Push Cube button, and note how far the Cube moves before it comes to a halt.

3 Use the popup menu to change from #energy to #linearVelocity for the sleepMode.

4 Click the Push Cube button again.

5 Compare the distance the Cube traveled this time. It is likely to have stopped much sooner when #linearVelocity

is selected.

6 With #linearVelocity selected for the sleepMode, click on the Spin Cube button. Count the seconds as the Cube

turns until the Cube Is Sleeping check box becomes checked.

7 Use the popup menu to change from #linearVelocity to #energy for the sleepMode.

8 Click the Spin Cube button again.

9 Compare the number of seconds that the Cube spins before it comes to a halt.

You can see that the #linearVelocity setting is more aggressive with linear motion through space and less aggressive

with angular motion. If, for example, you want to simulate a bicycle accident where the bicycle comes to a sudden stop

but the wheels of the overturned bicycle keep spinning for a long time, choose the #linearVelocity setting.

contactTolerance

The contactTolerance property determines how many world units an object must penetrate into another before a

collision is detected. A recommended value is 2% of the object's longest dimension. For the cube, which has sides 1

unit long, a good value would be 0.02.

Increasing contactTolerance allows objects to interpenetrate deeper before a collision is detected

If you set this value too high, then collisions may fail to be detected at all, and unexpected behavior may occur.

Rigid bodies

To make a 3D model behave as if it were solid, you can create a rigidBody object for it. A rigidBody object is an abstract

code object with no visible representation on the screen. Often, its geometry will be much simpler than the geometry

of the visible model that it is attached to. The Physics simulation will use the geometry of each rigidBody object to

detect collisions. Using simplified geometry improves performance.

308ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Creating a new rigidBody

To create a simple rigidBody, you can use the physicsMember.createRigidBody() method. To create a rigidBody with

more complex geometry, use the physicsMember.createRigidBodyFromProxy() method. See “Rigid body proxies” on

page 317 for more details.

The createRigidBody() method takes up to five parameters:

1 A unique name for the rigidBody that you want to create.

2 The name of an existing 3D model.

3 A body proxy symbol indicating what type of simplified geometry to use for the rigidBody. This can take one of the

following values:

• #box

• #sphere

• #convexShape

• #concaveShape

4 A body type symbol indicating whether the Physics simulation must check whether the movement of the rigidBody

must trigger collision detection with other moving bodies. This symbol can take either of the following values:

• #static

• #dynamic

Using a body type of #dynamic with a body proxy of #concaveShape will cause a script error. To create a dynamic

rigidBody with concave geometry, you will need to use a proxy template. See “Rigid body proxies” on page 317 for

details.

5 If you used #concaveShape for the body proxy parameter, you can use #flipNormals as a fifth parameter, to

indicate that the normals for the rigidBody must be flipped to face inwards. This is useful for creating collision

detection inside enclosed spaces like rooms. See “Collisions” on page 279 for an example.

Note: Before calling createRigidBody() you must add the #meshDeform modifier to the model that is to be associated

with the rigidBody object. When you do so, the Physics xtra gets access to the geometry of the model, and allows it to create

the proxy geometry that it uses for collision detection.

The Lingo handler below requires four parameters.

• aPhysicsMember: a pointer to a Physics member

• a3Dmodel: a 3D model in the 3D member that was used to initialize the Physics member

• aShape: either #box, sphere, #convexShape or #concaveShape

• aBodyType: either #static or #dynamic

The handler ensures that the #meshDeform modifier is attached to the model, and then creates a rigidBody object

inside the Physics member.

on CreateARigidBody(aPhysicsMember, a3DModel, aShape, aBodyType)
 vName = a3DModel.name
 a3DModel.addModifier(#meshDeform)
 vRigidBody = aPhysicsMember.createRigidBody(\ vName, \ vName, \ aShape, \ aBodyType)
 return vRigidBody
end CreateARigidBody

The following commands use this handler to create a dynamic rigidBody for a model called “Ball”, using a spherical

body proxy, and then displays the properties of the proxy geometry:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f4d.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc1b83f70210cd101-a6d1f5d11f273c8be8-8000.html

309ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

-- Lingo syntax
vPhysics = member("Physics")
vBall = member("3D").model("Ball")
vBallRB = CreateARigidBody(vPhysics, vBall, #sphere, #dynamic)
put vBallRB
 -- rigidBody("ball")
put vBallRB.properties
 -- [#radius: 0.500, #center: vector(0.000, 0.000, 0.000)]
// JavaScript syntax
vPhysics = member("Physics");
vBall = member("3D").getPropRef("model", 1);
<model("Ball")>
vBallRB = CreateARigidBody(vPhysics, vBall, symbol("sphere"), symbol("dynamic"));
<rigidBody("ball")>
trace(vBallRB.properties);
// <[#radius: 0.500, #center: vector(0.000, 0.000, 0.000)]>

Using flipNormals

The commands below create a rigidBody named “Room” and associate it with a 3D model named box. The rigidBody

is created with #concaveShape geometry and the normals flipped to face inwards.

-- Lingo syntax
vRB = member("Physics").createRigidBody("Room", "Box", #concaveShape, #static, #flipNormals)
put vRB
 -- rigidBody("Room")
put vRB.properties
 -- [#numVertices: 8, #numFaces: 12, #vertexList: [vector(4.500, -2.000, 0.500), vector(
4.500, 2.000, -0.500), vector(4.500, 2.000, 0.500), vector(-4.500, 2.000, 0.500), vector(
4.500, -2.000, -0.500), vector(-4.500, -2.000, -0.500), vector(-4.500, 2.000, -0.500),
vector(-4.500, -2.000, 0.500)], #face: [[#vertices: [5, 2, 3]], [#vertices: [5, 3, 1]],
[#vertices: [4, 3, 2]], [#vertices: [4, 2, 7]], [#vertices: [8, 1, 3]], [#vertices: [8, 3, 4]],
[#vertices: [5, 1, 8]], [#vertices: [5, 8, 6]], [#vertices: [5, 6, 7]], [#vertices: [5, 7, 2]],
[#vertices: [7, 6, 8]], [#vertices: [7, 8, 4]]]]
// JavaScript syntax
vRB = member("Physics").createRigidBody("Room", "Box", symbol("concaveShape"),
symbol("static"), symbol("flipNormals"));
<rigidBody("room")>
trace(vRB.properties);
// <[#numVertices: 8, #numFaces: 12, #vertexList: [vector(25.000, 25.000, -25.000), vector(
25.000, -25.000, -25.000), vector(-25.000, -25.000, -25.000), vector(25.000, 25.000, 25.000
), vector(25.000, -25.000, 25.000), vector(-25.000, 25.000, -25.000), vector(-25.000, -
25.000, 25.000), vector(-25.000, 25.000, 25.000)], #face: [[#vertices: [1, 2, 3]],
[#vertices: [1, 3, 6]], [#vertices: [2, 1, 4]], [#vertices: [2, 4, 5]], [#vertices: [7, 3, 2]],
[#vertices: [7, 2, 5]], [#vertices: [8, 4, 1]], [#vertices: [8, 1, 6]], [#vertices: [8, 6, 3]],
[#vertices: [8, 3, 7]], [#vertices: [7, 5, 4]], [#vertices: [7, 4, 8]]]]>

Note: Attempting to use #flipNormals as a parameter for createRigidBody() can provoke a script error. Do not use

it when the body proxy symbol is #sphere or #box. If you use it with a body proxy symbol of #convexShape, no error will

occur, but no action will occur either. The normals will not be flipped.

310ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Accessing a rigidBody

There are three methods for obtaining a pointer to a rigidBody

• physicsMember.getRigidBody() returns a pointer to the rigidBody whose name you pass as a parameter, or VOID if

no rigidBody with that name exists.

• physicsMember.getRigidBodies() returns a list of all the rigidBody objects in the Physics world.

• physicsMember.getSleepingBodies() returns a list of all the dynamic rigidBody objects in the Physics world which

are currently not moving.

Note: If you use an integer as the parameter to getRigidBody(), a script error occurs. To access a rigidBody by its integer

index number, use the following syntax:

vRB = physicsMember.getRigidBodies()[aIndex]
-- Lingo syntax
put member("Physics").getRigidBody("Ball")
 -- rigidBody("ball")
put member("Physics").getRigidBody("non-existant")
 -- <Void>
put member("Physics").getRigidBodies()
 -- [rigidBody("bat"), rigidBody("ball")]
put member("Physics").getSleepingBodies()
 -- [rigidBody("ball")]
// JavaScript syntax
trace(member("Physics").getRigidBody("Ball"));
// <rigidBody("ball")>
trace(member("Physics").getRigidBody("non-existant"));
// undefined
trace(member("Physics").getRigidBodies());
// <[rigidBody("bat"), rigidBody("ball")]>
trace(member("Physics").getSleepingBodies());
// <[rigidBody("ball")]>

Deleting a rigidBody

To delete a rigidBody from a Physics member, you can use deleteRigidBody().

-- Lingo syntax
vRB = member("Physics").getRigidBody("bat")put put member("Physics").deleteRigidBody(vRB)
 -- 1
put member("Physics").deleteRigidBody("ball")
 -- 0
// JavaScript syntax
vRB = member("Physics").getRigidBodies()[1];
<rigidBody("bat")>
member("Physics").deleteRigidBody(vRB);
1
vName = member("Physics").getRigidBodies()[1].name;
ball
member("Physics").deleteRigidBody(vName);
1

Note: Calling deleteRigidBody("aNonExistantBodyName"), and then attempting to create a rigidBody with that

name can lead to a script error.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67c9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67c9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67c7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f4e.html

311ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Rigid body properties

RigidBody objects have many properties. To make them easier to learn, they are grouped in categories below.

• Get-only properties

• Properties inherited from the Physics world

• Mass and position properties

• Static properties

• Motion properties

• Other properties

For a demonstration of the properties inherited from the Physics world, see “Physics world properties” on page 300.

To experiment with the remaining properties, download and launch the movie RigidBody.dir.

RigidBody.dir allows you to experiment with many rigidBody properties

For better performance, close the Cast window when working with the RigidBody.dir movie. Director will no longer

need to update the thumbnails of the text members in real-time.

http://www.adobe.com/support/director/examples/RigidBody.dir

312ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Get-only properties

A rigidBody object has five properties whose value is set at the moment that you call createRigidBody(), and which

cannot be changed later. Attempting to alter the value of these properties will provoke a script error.

• rigidBody.name: the string name of the rigidBody.

• rigidBody.model: the model with which the rigidBody is associated.

• rigidBody.shape: #box, #sphere, #convexShape or #concaveShape

• rigidBody.properties: a property list describing the geometry used by the rigidBody. The precise structure of the list

will depend on the shape of the rigidBody. Examples are given below.

• rigidBody.type: #dynamic or #static

The following are examples of different properties lists for different shape. The contents and layout of the output

has been edited for clarity. To see the full results, download and launch the movie Rigid Body Proxy Shapes.dir, then

try the same commands in the Message window.

put member(1).getRigidBodies()[2].shape
 -- #sphere
put member(1).getRigidBodies()[2].properties
 -- [#radius: 44.534,
 #center: vector(0.011, 0.734, -10.411)]
put member(1).getRigidBodies()[1].shape
 -- #box
put member(1).getRigidBodies()[1].properties
 -- [#length: 52.138,
 #width: 89.067,
 #height: 11.572,
 #center: vector(0.011, 3.479, -4.689)]
put member(1).getRigidBodies()[3].shape
 -- #convex
put member(1).getRigidBodies()[3].properties
 -- [#numVertices: <integer>,
 #numFaces: <integer>,
 #vertexList: [<vector>, ...],
 #face: [[#vertices: [<integer>, <integer>, <integer>], ...],
 ...]]

Properties inherited from the Physics world

The default values for following 7 properties are set by the equivalent properties for the Physics member itself. See

“Physics world properties” on page 300 for an illustration of these properties.

• rigidBody.angularDamping

• rigidBody.linearDamping

• rigidBody.contactTolerance

• rigidBody.friction

• rigidBody.restitution

• rigidBody.sleepMode

• rigidBody.sleepThreshold

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67b9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67ba.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67b4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b4-31c73ea211d558551a5-7ff5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67b1.html
http://www.adobe.com/support/director/examples/Rigid Body Proxy Shapes.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c19b79-7f80.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f4c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67c2.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67c1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f47.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f42.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f43.html

313ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Mass and position properties

• rigidBody.mass: a non-negative number. The default value of mass is 0.0, but rigidBody objects with a mass of zero

behave the same way as objects with a mass of 1.0. A rigidBody with a mass of zero will fall under the influence of

gravity, and will have a linearMomentum equal to its linearVelocity.

It is good practice to set the mass of all #dynamic rigidBody objects.

• rigidBody.centerOfMass: a position vector, relative to the origin point of the model's geometry. The value by default

is vector(0, 0, 0). This defines the point around which the rigidBody will rotate.

• rigidBody.position: a vector giving the current world position of the rigidBody. This will be the same as the

worldPosition of the model associated with the rigidBody.

• rigidBody.orientation: a list containing a vector axis direction and a scalar angle. This will be the same as the

transform.axisAngle property of the model associated with the rigidBody.

If you change the mass of a moving rigidBody on the fly, the value of its linearVelocity and angularVelocity

will remain unchanged, but the value of its linearMomentum and angularMomentum properties will be adjusted

automatically.

To test these properties, launch the RigidBody.dir movie. Click the Fire Down zAxis button, to make a ball with a mass

of 1 strike the block. Check the value of linearVelocity and linearMomentum. Click the Reset button, alter the mass

of the block, and then click the Fire Down zAxis button again. Notice how the change affects both the relative

movements of the ball and the block, and how the linearVelocity and linearMomentum are related. Now try

moving the centerOfMass to an off-center position and try again.

Testing how mass and centerOfMass affect how a rigidBody behaves after a collision

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f48.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f49.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67b7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67b8.html
http://www.adobe.com/support/director/examples/RigidBody.dir

314ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

In the test above, notice how the linearVelocity and linearMomentum indicate that the centerOfMass is moving

at a constant rate along the zAxis. However, the position of the rigidBody oscillates on the xAxis as the block rotates

around its centerOfMass.

Try dragging the pinhead to change the orientation axis, and dragging the position and orientation angle sliders to see

how this affects the block.

Note: When the orientation angle is zero or 360°, the orientation axis will automatically be set to vector(1, 0,

0). If you want to rotate a rigidBody around a different axis, be sure that you set both the axis and the angle each time.

The orientation axis is automatically set to vector(1, 0, 0) for angles of 0 and 360

For a comparison of rigidBody.attemptMoveTo() and setting the rigidBody.position property, see “Rigid body

methods” on page 316.

Note: Notice how the orientation angle moves backwards and forwards between 0 and 360 and that the orientation axis

flips through 180° each time the angle reaches 0 or 360.

Static properties

A rigidBody created with a body type of #static will never move as the result of a collision. You can stop a #dynamic

rigidBody from moving in two different ways.

• rigidBody.isPinned can be TRUE or FALSE. If you set it to TRUE, then a dynamic rigidBody will behave like a static

one. If it is struck by a moving dynamic rigidBody, it will remain pinned to its current position.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67ac.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67b7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67c0.html

315ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• rigidBody.isSleeping can be TRUE or FALSE. If you deliberately set it to TRUE it will freeze the movement of the

object. Its velocity and momentum properties will be reset to zero. If a sleeping rigidBody is struck by another

rigidBody, then it will stop sleeping and move in reaction to the collision.

You can set the sleepThreshold property for the Physics world, or for each rigidBody individually to determine

when a slowly moving object will be considered to have come to rest. See “Physics world properties” on page 300

for an illustration.

To experiment with these properties, launch the RigidBody.dir movie, and click the 3D sprite to fire a cannonball at

the block. After the impact, select the isSleeping button. If you time your action right, you can arrange for the

cannonball to strike the block a second time, and wake it up from its sleep.

You can also pin the block in position, by selecting the isPinned button. When you click on the block, the cannonball

will bounce of it, but the block itself will not move.

Testing the isPinned property of rigidBody objects

Motion properties

• rigidBody.linearVelocity is a vector indicating the speed and direction of the motion of the centerOfMass of the

rigidBody.

• rigidBody.linearMomentum is a vector obtained by multiplying the linearVelocity of the rigidBody by its mass.

Momentum is conserved in elastic collisions. When two elastic objects collide in space, they exchange their

momentum along the direction that is orthogonal to their surface of contact.

• rigidBody.angularVelocity is a vector indicating the speed and direction of the rotation of the rigidBody around its

centerOfMass.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67bf.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f65.html
http://www.adobe.com/support/director/examples/RigidBody.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f4a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f4b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f44.html

316ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• rigidBody.angularMomentum is a vector obtained from a calculation combining the angularVelocity of the

rigidBody and its mass. Click here for more details.

Changing the value of a velocity property will change the value of the associated momentum property, and vice versa.

Other properties

• rigidBody.axisAffinity is a property that is used only with concave rigidBody objects. See “Rigid body properties”

on page 311 for more details on concave rigidBody objects.

• rigidBody.userData is a property that can be used to hold any Lingo value. Unlike the node.userData and

member3D.userData properties, rigidBody.userData is initially VOID, not a property list. You can set it to a

property list if you require.

Rigid body methods

RigidBody objects have five methods that allow you to move them in different ways.

• rigidBody.applyForce()

• rigidBody.applyLinearImpulse()

• rigidBody.applyAngularImpulse()

• rigidBody.applyTorque()

• rigidBody.attemptMoveTo()

To test the effects of these methods, download and launch the movie RigidBody.dir and test the following commands

in the Message window. Click the Reset button between each command. Try changing the mass of the Box rigidBody.

Note how this affects the velocity and momentum values. Try altering the position of the centerOfMass to see how

this affects the movement.

Force and linearImpulse

A force is used to accelerate an object. An impulse provides it with momentum. If the rigidBody is initially at rest, you

can imagine the difference being pushing a truck to get it started (force) or jumping off a moving truck and running

beside it (momentum). In the first case, it takes the truck some time to accelerate to its top speed. In the second, you

are already traveling at the top speed when you start running.

Apply a force at the centerOfMass:

member(3).getRigidBody("box").applyForce(vector(0, 0, -10))

Apply a force off-center. Note that the force can be applied outside the physical limits of the rigidBody itself:

member(3).getRigidBody("box").applyForce(vector(0, 0, -10), vector(10, 0, 0))

Modify the momentum of the rigidBody.

member(3).getRigidBody("box").applyLinearImpulse(vector(0,0,-10))

Apply an impulse off-center:

member(3).getRigidBody("box").applyLinearImpulse(vector(0,0,-10), vector(10, 0, 0))

Note that when you apply an off-center force along the zAxis, the resulting rotation is around an axis where the z value

is zero. The rotation always starts at right angles to the initial force.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f45.html
http://en.wikipedia.org/wiki/Angular_momentum
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS9EB5CEAA-6363-4585-9EC3-05E9632C4FB6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67b0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67af.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67ae.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c19b79-7f1f.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67ad.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67ac.html
http://www.adobe.com/support/director/examples/RigidBody.dir

317ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Torque and angularImpulse

A torque is a turning force applied to an object, like using a wrench. An angular impulse provides an object with

angular momentum. You can think of the difference as between starting to push a merry-go-round in a children's park

(force) and jumping off the merry-go-round while it is already in motion (momentum).

member(3).getRigidBody("box").applyTorque(vector(0,0,-10))
member(3).getRigidBody("box").applyAngularImpulse(vector(0,0,-10))

Note that torque and an angularImpulse applied along the zAxis create a rotation around the zAxis. Use the right hand

rule to determine the direction of the rotation. Point your thumb along the axis of rotation and curl your fingers. A

positive rotation will be in the direction in which your fingers point.

attemptMoveTo()

This method checks if the target position is free of obstacles. If so, the rigidBody is moved to the required position. If

not, it does not move at all.

When you set the position property of a rigidBody directly, you can move one rigidBody into a collision position with

another. If either body is free to move, it will move to a collision-free position on the next simulation step.

Reset the RigidBody.dir movie, and then try the example below in the Message window. Notice how the ball does not

collide with the block until the fourth call, when its position is set so that it intersects with the block. Compare the

results you achieve by setting the position with the results of using attemptMoveTo(), where no movement will occur

if it will end in a collision.

member(3).getRigidBody("ball").position = vector(0, 0, 3)
member(3).getRigidBody("ball").attemptMoveTo(vector(0, 0, 2))
member(3).getRigidBody("ball").attemptMoveTo(vector(0, 0, 0.3))
member(3).getRigidBody("ball").position = vector(0, 0, 0.3)
member(3).getRigidBody("ball").position = vector(4, 0, -0.5)
member(3).getRigidBody("ball").attemptMoveTo(vector(4, 0, 0.5))

Reset the movie again, then check the isPinned button, and try the last command again. Notice how the behavior is

different when the block is prevented from moving.

Rigid body proxies

The Dynamiks xtra allows you to define both convex and concave proxy templates. Use the following methods to

create proxy templates and to create rigidBody objects from them:

• physicsMember.addProxyTemplate()

• physicsMember.createRigidBodyFromProxy()

• physicsMember.createProxyTemplate()

• physicsMember.loadProxyTemplate()

For a complete demonstration on how to use these methods, download and launch the movie Rigid Body Proxy

Shapes.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67ac.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc1b83f70210cd1015fa5e91d11f277907b1-8000.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc1b83f70210cd101-a6d1f5d11f273c8be8-8000.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc1b83f70210cd1015fa5e91d11f277907b1-7fff.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc1b83f70210cd101-6988d82b11f277e96ee-8000.html
http://www.adobe.com/support/director/examples/Rigid Body Proxy Shapes.dir
http://www.adobe.com/support/director/examples/Rigid Body Proxy Shapes.dir

318ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The Rigid Body Proxy Shapes.dir movie contains code to illustrate the creation of a rigidBody from a proxy template

Dynamic concave rigid body parameters

The following parameters are required for a dynamic concave rigid body:

• Depth

• Concavity

• Merge Volume

Depth

The Depth parameter specifies the maximum level of recursion for cutting the body. Valid values for this parameter

are integers in the range [0,10].

Note: The value of the Depth parameter does not generally exceed 7.

The concave shape is cut recursively into smaller bodies along a plane. The plane for each cut operation is along the

longest edge of the oriented bounding box of the input mesh.

Concavity

The volume of Concavity is computed as a percentage of the total volume of the input hull. Highly concave tiny

bumps, which are insignificant in relation to the total volume, are ignored. If the volume of Concavity is below a

threshold, it is considered “convex enough” and no further recursions are carried out.

Valid values of the Concavity parameter are real numbers in the range [0,100]. Suggested values for this parameter

are from 0 through 20.

Merge Volume

319ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The Merge Volume parameter determines how the convex meshes are cleaned and combined to form the complete

body. The convex hull pieces created by decomposing the concave body are arranged in descending order of volume.

Beginning with pieces having the largest volume, the volumes of the pieces are compared in sets of two. This procedure

is repeated to determine the volume of the combined body.

If the combined volume is within a specified percentage threshold, the separate pieces are discarded, and the combined

hull is retained. This procedure is repeated until no two hulls can be merged.

Valid values for this parameter are real numbers in the range [0,100]. Suggested values for the Merge Volume

parameter are from 0 through 30.

Recommendations

Tweak the parameters carefully, because a proxy model can affect the performance of Director. Ensure that the

concave mesh is closed. Ray-casting from inside a concave rigid body can cast itself. Keep in mind this scenario while

ray-casting.

Terrains

A terrain is a special kind of rigid body. It consists of a surface and extends downwards indefinitely. Any rigidBody

placed below the surface will be moved vertically upwards on the next simulate step and placed on the surface.

A terrain is similar to a bumpy plane that is finite in width and length and defines an elevation at each point within

that area. All values below the elevation are treated as being inside the terrain volume. A terrain is not a closed shape,

but rather the boundary of a volume that extends downward for a certain distance.

Creating a terrain in Director involves the following steps:

1 In a third-party 3D design application, use terrain generator tools and generate the terrain mesh.

2 Save the corresponding height map as a director compatible file format (BMP, JPEG, or PNG) using the terrain

generator tool.

3 Import the file into Director and create a height-map matrix by reading the file contents. For example, if you are

using an image file, each pixel has to be read and the height has to be computed using the pixel information.

4 Create a mesh in director 3D using the height map information, at the appropriate scale.

5 Pass the height map matrix to the physicsMember.createTerrainDesc() method, along with values for friction

and restitution.

6 Pass resulting terrainDesc object and various other parameters to the physicsMember.createTerrain() method

To see this in action, and to find a Movie Script that does steps 3 to 6 for you, download and launch the movie

Terrain.dir. This movie takes a tiny bitmap and converts it into slope for a virtual egg-rolling ceremony.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f0a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f08.html
http://www.adobe.com/support/director/examples/Terrain.dir

320ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The Terrain Creator script generates a terrain model and a terrain Physics object automatically

Creating custom terrains

You can take the Terrain Creator script and use it as is in your own projects. The Terrain_Create handler expects a

property list with seven or eight properties:

• #member: 3D member used to display your scene.

• #physics: Physics member used to simulate the scene.

• #name: a unique string, not used either for a modelResource or a model name.

• #heightMap: a grayscale bitmap member, with the highest points shown in white and the lowest points shown in

black. The bitmap can have any dimensions.

• #dimensions: a property list with positive floating point values for the #width, #height and #length (in world

units) of the final terrain model. These values can be completely independent of the size of the height map in pixels.

• #friction: a floating point value between 0.0 and 1.0.

• #restitution: a floating point value between 0.0 and 1.0.

• #transform: the world-relative transform of the terrain in its final position.

• #flat: (optional). If this value is either #flat or TRUE, the terrain mesh will be created using

meshResource.generateNormals(#flat). If not, a smooth mesh will be generated.

Points to note

The matrix required to generate the terrainDesc object obliges you to create a mesh with its origin point at the far

left corner. None of the coordinates in the resulting mesh can be negative. You will need to take this into account when

positioning the terrain in 3D space.

It is recommended to use several small terrain objects, placed side by side. Using a single large terrain can lead to

performance issues. For your own projects, you may want to find the optimal balance between multiple terrain objects,

the terrain dimensions, and the polygon count for each individual terrain.

321ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

If you plan to modify this script, or to write our own terrain generator script, know that the matrix considers that rows

run from front to back and columns are arranged from left to right. The Terrain Creator script takes this into account

when reading in the height map data from the image.

The code in the Terrain Creator script is fully commented.

Ray casting

The Dynamiks xtra provides the following ray casting techniques that work in a similar way to

member3D.modelsUnderRay():

• physicsMember.rayCastClosest()

• physicsMember.rayCastAll()

These methods work on both rigidBody objects and on terrains and take two parameters:

• A vector origin point, in world coordinates

• A vector direction

The output is a list (or a list of lists) containing the following data in the following order:

• Reference to the rigidBody or terrain object

• Point of intersection with the object, in world coordinates

• Normal to the point of intersection

• Distance from the origin of the ray to the point of intersection

Note: camera.modelsUnderLoc() does not have an equivalent. However, you can achieve the same results by using the

world position of the camera as the origin point of the ray. Then, use camera.spriteSpaceToWorldSpace() to obtain a

point in the world from which to determine a direction.

To see a demonstration of these methods, download and launch the movie RayCast.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6e7b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6e7a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7988.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78f7.html
http://www.adobe.com/support/director/examples/RayCast.dir

322ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The result of member("Physics").rayCastAll() from the camera through the center of the sprite

Comparison with modelsUnderRay()

The results returned by the Physics member calls will not be identical to those returned by

member3D.modelsUnderRay() or camera.modelsUnderLoc(), when used with the #detailed parameter.

Here is a comparison of the equivalent sections of the output from each method.

• rayCastAll()

[[rigidBody("sphere"),

 vector(0.530, 34.977, 35.726),

 vector(0.011, 0.700, 0.715),

 409.626], ...]

• modelsUnderLoc()

[[#model: model("Sphere"),

 #distance: 409.717,

 #isectPosition: vector(0.530, 34.911, 35.662),

 #isectNormal: vector(0.104, 0.646, 0.756), ...]

Here are the main differences:

• The 3D member methods return more details because they have access to more information, such as mesh, face and

uv data.

• With member3D.modelsUnderRay(), you can choose to limit the ray-cast to a limited number of models over a

limited distance. You do not have this option with the Physics ray casting methods.

• The 3D model and the Physics rigidBody do not use the same geometry. In most cases the rigidBody geometry is

simpler. This gives a slight variation in the position and angle of the intersection. It can also mean that holes and

concavities in models are not present in their associated rigidBody object.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7988.html

323ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

In this particular case, the rigidBody for the torus is created using #convexShape geometry. This fills in the hole in the

centre. In the Ray Cast Test behavior, you can find the line of code in the mCreateTorus() handler that creates the

rigidBody, and alter it to use #concaveShape geometry instead.

Collisions

By default, a Physics simulation will resolve all collisions automatically. After a collision between two rigidBody

objects, or between a rigidBody and a terrain, the simulation will work out a new trajectory for each of the objects. To

do so, it will refer to the following properties of the colliding objects:

• rigidBody.angularMomentum

• rigidBody.linearMomentum

• rigidBody.restitution

If one object is a terrain or is defined as #static, or has its isPinned property set to TRUE, that body will not move.

You may want to deactivate collision detection for certain objects at certain times, or to be informed of when collisions

between particular objects occur.

Controlling collision detection

To customize control of collisions detection, you can use the following methods:

• physicsMember.disableCollision(): allows rigidBody objects to pass through each other with no collision

management applied to them. You can use this method in three different ways to:

• Disable collision management between one object and all others

• Disable collision management between a given pair of objects

• Disable all collision management for the entire scene

• physicsMember.getCollisionDisabledPairs(): returns a list of the pairs of objects for which you have explicitly

disabled collision management using disableCollision().

• physicsMember.enableCollision(): resumes applying collision management to rigidBody objects for which

disableCollision() had been used earlier.

Controlling collision callbacks

To customize the control of which collisions generate a callback event, you can use the following methods:

• physicsMember.registerCollisionCallback(): registers a handler to deal with all the reports of collisions generated.

• physicsMember.enableCollisionCallback(): starts generating collision callback events for particular objects

• physicsMember.disableCollisionCallback(): allows you stop generating collision callback events for particular

objects. You can use this method in three different ways:

• To disable collision callback when one particular object collides with any other object.

• To disable collision callback when a given pair of objects collide.

• To disable all collision callback for the entire scene.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f45.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f4b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f47.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f25.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f20.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f29.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f27.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f27.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f25.html

324ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• physicsMember.getCollisionCallbackDisabledPairs(): allows you to create pairs of objects which can collide with

each other without generating a collision callback event, but which will continue to generate collision callback

events when they collide with other objects.

• physicsMember.removeCollisionCallback(): stops triggering callbacks to the handler registered by

registerCollisionCallback().

Experimenting with collision detection

To see an example of how collision detection can be set up, download and launch the movie BallRoom.dir. This movie

demonstrates a major issue with the way you need to design your 3D world to optimize for collision detection. It

suggests various code-based solutions, and a design-based solution.

The BallRoom.dir movie uses collision detection to keep score

BallRoom.dir is a very simple game created from three rigidBody objects.

• rigidBody("Room") is based on a cuboid mesh model, and set to use #concaveShape geometry, with its normals

turned to face inwards. This means that other objects can move around inside it, with collisions being detected on

its inside surfaces. Because of its concave geometry, this must be created as a #static rigidBody.

• rigidBody("Ball1") is a dark red sphere, with a #dynamic body type.

• rigidBody("Ball2") is a white sphere, with a #dynamic body type.

The camera is placed in one of the corners of the room, and adjusted so that the whole area of the room is visible, with

the exception of the ground immediately in front of the camera. The inset camera in the top left corner shows the room

as viewed from the top.

After all the rigidBody objects have been created, the Collision Demo behavior executes commands similar to the

following code.

member("Physics").registerCollisionCallback(#FilterCollision, me)
member("Physics").enableCollisionCallback()

The first call indicates that any collision callbacks that are generated has to be handled by the on FilterCollision()

handler of the Collision Demo behavior. The second tells the Physics member to start generating callbacks for all

collisions. No callbacks will be made until both commands have been made.

Using enableCollisionCallback() with no parameters means that callbacks for all existing rigidBody objects will

be enabled.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f28.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f26.html
http://www.adobe.com/support/director/examples/BallRoom.dir

325ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Collision callbacks contact reports

Each time there is a collision between either Ball and the Room, or between the two Balls, the FilterCollision()

handler will be called. It will receive a linear list of ContactReport objects. The Physics member is initialized to use five

substeps, and there are two dynamic rigidBody objects. This means that up to ten ContactReports can be generated

per frame.

To visualize what a ContactReport looks like, launch the BallRoom.dir movie, then execute the following command in

the Message window to hijack the callback events:

member("Physics").registerCollisionCallback(#TestCallback)

Now, click on the 3D sprite. You can see the following output printed into the Message window:

 -- [(Contact Report), (Contact Report), (Contact Report)]
 -- (Contact Report)
 -- "
objectA: rigidBody("room")
objectB: rigidBody("ball2")
contactPoints: [[vector(-3.8575, -28.6366, 129.8082)]]
contactNormals: [vector(0.0000, -1.0000, 0.0000)]"

Then the movie will halt to prevent spamming your Message window with endless reports.

You can find the #TestCallback() handler in the Test Callback movie script.

Using a test handler to inspect the data sent to a collision callback

Notice that the objectA and objectB values are listed in the order in which the rigidBody objects were created.

RigidBody("room") was created before rigidBody("ball2"), so it appears first in the

physicsMember.getRigidBodies() list, and is given top billing in the ContactReport.

The contactPoints and contactNormals values are both lists. In the illustration above, they both contain only one

vector each. This is because the ball in question is just in contact with the base of rigidBody("room"). If the ball were

also in contact with a wall, it would be touching rigidBody("room") in two places, so both lists contain two vectors.

In the case shown above, the contactNormal value is vector(0.0, -1.0, 0.0). This vector points downwards. It

indicates that objectA touches objectB at a point where the normal to the surface of objectB is facing downwards.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67c9.html

326ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Filtering for pertinent collisions

The Physics simulation will send all ContactReports for all collisions between registered objects to a single handler. In

the current simulation, this means that it will receive ContactReports on every frame saying that the ball objects are in

contact with the bottom surface of the room object. However, the game play is set up so that only contacts with the

walls or between two balls are of any interest. The role of the FilterCollision() handler is to filter out all these

unneeded reports. (A better technique is explained in “Preventing unwanted collisions” on page 328).

In this game, it is enough to test whether the first (and only) contactNormal vector in the ContactReport is pointing

downwards. Only ContactReports which indicate a collision where the normal is not parallel to the yAxis are passed

on to the mCheckCollisions() handler, which keeps the score.

Here is a simplified version of the handler:

on FilterCollision(me, aContactReportList)
 ii = aContactReportList.count
 repeat while ii
 vContactReport = aContactReportList[ii]
 vNormal = vContactReport.contactNormals[1]
 if vNormal.y < -0.999 then
 aContactReportList.deleteAt(ii)
 end if
 ii = ii - 1
 end repeat
 me.mCheckCollisions(aContactReportList)
on FilterCollision

This handler iterates backwards through the list of ContactReports, deleting those that are of no interest.

In your own projects, develop your own criteria for treating or ignoring ContactReports.

Limiting the number of reported collisions

To see exactly how many collision callbacks are generated, launch the BallRoom.dir movie, hold down the Option key

(Macintosh) or Alt key (Windows) and click on the 3D sprite. You will see data filling up your Message window: up

to 10 ContactReports per frame. Release the modifier key when you have seen the required messages. Here is a very

small sample:

 -- "
objectA: rigidBody("room")
objectB: rigidBody("ball2")
points: [[vector(-1.2625, -28.6313, 129.4819)]]
normals: [vector(0.0000, -1.0000, 0.0000)]

objectA: rigidBody("room")
objectB: rigidBody("ball2")
points: [[vector(-2.5208, -28.6300, 109.0314)]]
normals: [vector(0.0000, -1.0000, 0.0000)]

objectA: rigidBody("room")
objectB: rigidBody("ball2")
points: [[vector(-3.7750, -28.6331, 88.6485)]]
normals: [vector(0.0000, -1.0000, 0.0000)]
****** …"

http://www.adobe.com/support/director/examples/BallRoom.dir

327ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

For performance reasons, try to generate only the collision events that are useful to you. In some cases, you can do this

by limiting the number of objects that are registered to generate a callback event. Both

physicsMember.enableCollisionCallback() and physicsMember.disableCollisionCallback() can be used with a variety

of parameters to fine-tune which objects are enabled for callback at any given time.

Launch the BallRoom.dir movie and click on the red ball. When the white cue ball hits the red ball without first

bouncing off a wall, a ‘foul’ is given.

Click on the red ball. The collision will result in a Foul being reported

If you disable all callbacks, you can avoid this penalty. Restart the movie and then execute the following command in

the Message window:

member("Physics").disableCollisionCallback()

If you disable all callbacks, no Foul is reported when the cue ball strikes the red ball directly

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f29.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f25.html
http://www.adobe.com/support/director/examples/BallRoom.dir

328ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

However, to win any points, you need to detect collisions between the cue ball and both the walls and the red ball. You

can enable collision callbacks for a pair of objects with the enableCollisionCallback() method.

Relaunch the movie, then execute the following lines in the Message window:

member("Physics").disableCollisionCallback()
vBall1 = member("Physics").getRigidBody("Ball1")
vBall2 = member("Physics").getRigidBody("Ball2")
member("Physics").enableCollisionCallback(vBall1, vBall2)

Hold the Option/Alt key down and click on the red ball. This time, you will see very few events are reported in the

Message window. The rigidBody("room") is not registered, so it generates no callbacks, neither for the ground nor

for the walls.

Restart the movie and try a different approach. In the Message window, execute the following lines:

member("Physics").disableCollisionCallback()
vBall2 = member("Physics").getRigidBody("Ball2")
member("Physics").enableCollisionCallback(vBall2)

This code disables all the callbacks set up by the Collision Demo behavior, then re-enables callbacks generated by the

white cue ball, when the ball is in contact with any other object. If you hold down the Option/Alt key, you will again

see a flood of events. Collisions between the red ball and the room are now ignored, so that reduces the number by half.

Preventing unwanted collisions

In the BallRoom.dir movie, the problem is that the contact between the ground and the balls produces unwanted

collision reports. A simple solution is to use a different rigidBody object for the ground, so that the balls only touch

the rigidBody(“room”) when they strike a wall.

Hold down the Shift key and restart the BallRoom.dir movie. Now, hold down the Option/Alt key and click on the red

ball. Watch the output in the Message window. Only useful collisions are now generated.

Using a separate rigidBody for the floor and excluding it from collision callbacks to solve the problem

Note: Careful design of the models and rigidBody objects in you 3D world can make your job with scripting simpler. If

you work with a 3D designer, you may need to explain your collision requirements in detail, so that the designer can

suggest the appropriate solutions.

http://www.adobe.com/support/director/examples/BallRoom.dir

329ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Holding down the Shift key as you launch the movie makes the following lines of code execute in the mInitialize()

handler of the Collision Demo behavior:

 if the shiftDown then
 me.mCreateFalseFloor(vRadius, vSize)
 pPhysics.disableCollisionCallback(pRoomRB, pRedRB)
 end if

The mCreateFalseFloor() handler creates an extra rigidBody called “False Floor” that has a surface just above the

base of the Room object. Since it is created after the call to enableCollisionCallback(), this rigidBody is

automatically excluded from the list of objects that generates callback events.

Used with two parameters, the disableCollisionCallback() explicitly prevents collisions between those two

objects from generating callback events. You can use the getCollisionCallbackDisabledPairs() function to retrieve a list

of all the pairs of objects which do not generate a callback event when they collide. (The layout of the output below has

been edited for clarity).

trace(member("Physics").getCollisionCallbackDisabledPairs())
 -- [[rigidBody("room"), rigidBody("ball1")],
 [rigidBody("room"), rigidBody("false floor")],
 [rigidBody("ball1"), rigidBody("false floor")],
 [rigidBody("ball2"), rigidBody("false floor")]]

You may notice that this list includes explicit mention of the pair [rigidBody("room"), rigidBody("false

floor")]. This mentioning of the pair is in fact unnecessary, since both these objects are static.

Note: Now that you have experimented with all the methods for controlling collision callback events, you may realize that

you can replace the last nine lines of the mInitialize() handler with the following lines:

me.mCreateFalseFloor(vRadius, vSize)
pPhysics.registerCollisionCallback(#FilterCollision, me)
pPhysics.enableCollisionCallback(pCueRB)

This code will lead to the most efficient generation of callback events for the movie.

Disabling collisions

In your own projects, there may be situations where you want the Physics simulation to ignore collision detection

altogether. You can use physicsMember.disableCollision() for this purpose.

For the experiments below, do not press any modifier keys when starting the BallRoom.dir movie. Relaunch the

BallRoom.dir movie, then execute the following command in the Message window:

member("Physics").disableCollision()

You will see the ball sinking into the floor as collisions are no longer detected between any objects. If the balls do not

completely disappear, click the red ball, and you will see the white cue ball pass through it, and then through the wall

of the room.

Restart the movie and then execute the following commands in the Message window:

 vBall1 = member("Physics").getRigidBody("ball1")
 member("Physics").disableCollision(vBall1)

This code disables collision detection between the red ball and all other objects in the scene. If the red ball does not

sink entirely through the floor, click on it. The white cue ball will pass straight through it, and then bounce off the wall.

Restart the movie and then execute the following commands in the Message window:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f28.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f25.html
http://www.adobe.com/support/director/examples/BallRoom.dir
http://www.adobe.com/support/director/examples/BallRoom.dir

330ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

vBall1 = member("Physics").getRigidBody("ball1")
 vRoom = member("Physics").getRigidBody("room")
 member("Physics").disableCollision(vBall1, vRoom)

This code disables collision detection only between the red ball and the room. Collisions between the white ball and

the red ball will still be detected. What do you predict will happen when you click on the red ball?

Collision disabled pairs

You can use physicsMember.getCollisionDisabledPairs() to retrieve a list of the pairs of objects for which you have

explicitly disabled collision management using disableCollision(). Try the following command in the Message

window.

 trace (member("Physics").getCollisionDisabledPairs())
 -- [[rigidBody("room"), rigidBody("ball1")]]

Changing the callback handler

You can only have one registered collision callback handler at a time. You can change the callback handler by

registering a new one. For example, launch the BallRoom.dir movie, then execute the following command in the

Message window:

member("Physics").registerCollisionCallback(#TestCallback)

This code will make the on TestCallback() in the Test Callback movie script take over the handling of callback

events.

If you want to stop all callback event detection completely, you can use physicsMember.removeCollisionCallback().

This function stops triggering callbacks to the handler registered earlier. To test this behavior, execute the following

command in the Message window:

member("Physics").removeCollisionCallback()

Hold the Option/Alt key down and click on the red ball. No collision ContactReports will appear in the Message

window, and you will see no Foul warning. (You will still lose a point each time you click, because the scoring system

will not be told of any valid interactions before the balls both come to a halt. See the mStartScoring(),

mCheckForSleep() and mCheckCollisions() handlers for details on how the scoring is treated.)

Joints and springs

The Dynamiks xtra provides for four different ways to join to objects together in a way that mutually constrains their

motion.

• Angular joints allow objects to rotate freely to any angle, but constrain the relative linear movements of two objects.

See “Angular joint properties” on page 334 for details on how to modify an angular joint after you have created it.

• Linear joints allow objects to move freely in any linear direction, but constrain the relative rotations of two objects.

See “Linear joint properties” on page 335 for details on how to modify a linear joint after you have created it.

• Springs create a compression or an expansion force between two objects which tend to move them until they are at

a given resting distance from each other. See “Spring properties” on page 336 for details on how to modify a spring

after you have created it.

• “D6Joints” on page 338 allow you to control movement of two different types along 3 different axes giving six

degrees of freedom.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f20.html
http://www.adobe.com/support/director/examples/BallRoom.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f26.html

331ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Note: This article deals only with angular joints, linear joints, and springs. For details of D6Joints, see “D6Joints” on

page 338.

Although they share many characteristics, springs are treated as one kind of object (spring) and angular and linear

joints are treated as a different kind of object (constraint). The terms “joint” and “constraint” both refer to the angular

and linear joint objects.

To compare the behavior of Linear constraints and Angular constraints, download and launch the movie

JointsBasics.dir.

The JointsBasics.dir movie allows you to compare the behavior of Linear and Angular Joints

ConstraintDesc

Before you can create any of these three types of controls, you will need to create a ConstraintDesc object using the

ConstraintDesc() function. You then use the ConstraintDesc object to create the Linear Joint, Angular Joint, or Spring.

The ConstraintDesc() function requires seven items of data:

• name: a unique string, not used by any other constraint

• objectA: a rigidBody object, to connect to one end of the constraint

• objectB: a rigidBody or VOID or null to connect to the other end of the constraint. If VOID or null are used then

the objectA rigidBody will be connected to a fixed point in world space.

• pointA: a vector position in the frame of reference of the objectA rigidBody to which the constraint is to be

attached.

• pointB: a vector position in the frame of reference of the objectB rigidBody, or in world space, to which the

constraint is to be attached.

• stiffness: a non-negative floating point number to define the stiffness of the constraint.

• damping: a non-negative floating point number to define the damping of the constraint.

http://www.adobe.com/support/director/examples/JointsBasics.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f3d.html

332ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Example
vRigidBody = member("Physics").getRigidBodies()[1]
vWorldPoint = vector(0, 0, 0)
vStiffness = 1234.5
vDamping = 321.0
vConstraintDescriptor = ConstraintDesc("Test Constraint", vRigidBody, null,
vRigidBody.position, vWorldPoint, vStiffness, vDamping)
trace(vConstraintDescriptor)
 -- (Constraint Descriptor)

Creating the constraint

You can use the following functions to create the three different types of constraints:

Note: Each function requires different parameters in addition to a ConstraintDesc object.

• physicsMember.createAngularJoint() requires a floating point rest length for the constraint

• physicsMember.createLinearJoint() requires an axisAngle list, containing an axis vector and a scalar angle

• physicsMember.createSpring() requires both a symbol force exertion mode and a floating point rest length for the

constraint. The force exertion mode symbol can take one of three values: #kDuringCompression,

#kDuringExpansion, or #kBoth.

Examples

In the examples below, it is assumed that a ConstraintDesc, using a unique name, has already been created, as

described in the previous section. Although a ConstraintDesc is an independent object, a script error occurs if you

try to use the same ConstraintDesc for two different controls. This is because the name for the control is stored in the

ConstraintDesc, and each control must have a unique name.

The first example shows the creation of an angular joint with a rest length of 23.59 world units.

vRestLength = 23.59
vAngularJoint = member("Physics").createAngularJoint(vAngularDescriptor, vRestLength)
trace(vAngularJoint)
 -- constraint("angular")
trace(vAngularJoint.constraintType)
 -- #angular
trace(vAngularJoint.properties) -- [#length: 23.5900]

The next example shows the creation of a linear joint with a random orientation.

vAxis = randomVector()
vAngle = random(360)
vOrientation = [vAxis, vAngle]
vLinearJoint = member("Physics").createLinearJoint(vLinearDescriptor, vOrientation)
trace(vLinearJoint)
 -- constraint("linear")
trace(vLinearJoint.constraintType)
 -- #linear
trace(vLinearJoint.properties)
 -- [#axis: vector(0.9598, 0.0499, -0.2761), #angle: 56.0000]

The last example shows the creation of a spring which will resist both expansion and contraction, and which has a rest

length of 17.23.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f41.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f40.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f3f.html

333ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

vForceExertionMode = #kBoth
vRestLength = 17.23
vSpring = member("Physics").createSpring(vSpringDescriptor, vForceExertionMode, vRestLength)
trace(vSpring)
 -- spring("spring")
trace(vSpring.constraintType)
 -- #spring
trace(vSpring.flags)
 -- #kBoth
trace(vSpring.restLength)
 -- 17.2300

Properties: differences and similarities

Because they all require a ContstraintDesc object for their creation, all joints and springs have a shared set of

properties: name, objectA, objectB, pointA, pointB, stiffness, and damping. They also share a constraintType

property, which takes the value #angular, #linear, or #spring.

Each constraintType has other properties to define its type-specific values. Angular joints and linear joints have a

properties property, which is a property list.

trace(vAngularJoint.properties) -- [#length: 23.5900]
trace(vLinearJoint.properties)
 -- [#axis: vector(0.9598, 0.0499, -0.2761), #angle: 56.0000]

Attempting to access the non-existant properties property of a spring will lead to a script error. For a spring, you

must use the flags and restLength properties.

trace(vSpring.flags)
 -- #kBoth
trace(vSpring.restLength)
 -- 17.2300

Configurable properties

For angular joints and linear joints, you can only change the values of the stiffness and damping properties. All the

other properties are get-only. If you try to change the value of one of these other properties, a script error occurs. See

“Angular joint properties” on page 334 and “Linear joint properties” on page 335 for more details.

For springs, you can set the values of all the properties except name and constraintType. See “Spring properties” on

page 336 for more details.

Accessing joints and springs

You can use the function physicsMember.getConstraint() to obtain a reference to either a spring or a joint as shown

below:

trace(member("Physics").getConstraint("angular"))
 -- constraint("angular")
trace(member("Physics").getConstraint("linear"))
 -- constraint("linear")
trace(member("Physics").getConstraint("spring"))
 -- spring("spring")

Conversely, the physicsMember.getSpring() function will return a reference to a named spring, but will fail to find any

constraint objects.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67a5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67a3.html

334ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

trace(member("Physics").getSpring("test constraint"))
 -- spring("test constraint")
trace(member("Physics").getSpring("linear"))
 -- <Void>
trace(member("Physics").getConstraint("linear"))
 -- constraint("linear")

For similar reasons, the physicsMember.getConstraints() function will only include joints in the output list.

trace(member("Physics").getConstraints())
 -- [constraint("linear"), constraint("angular")]

To obtain references to all the springs created within a Physics member, you need to use the

physicsMember.getSprings() function.

trace(member("Physics").getSprings())
 -- [spring("spring")]

Deleting a joint or spring

To delete a joint or a spring, you can use the physicsMember.deleteConstraint() method. You can provide either the

name of the object to delete, or a reference to it.

trace(member("Physics").getSprings())
 -- [spring("spring")]
trace(member("Physics").deleteConstraint("spring"))
 -- 1
trace(member("Physics").getSprings())
 -- []
vAngularJoint = member("Physics").getConstraint("angular")
trace(vAngularJoint)
 -- constraint("angular")
trace(member("Physics").deleteConstraint(vAngularJoint))
 -- 1
trace(vAngularJoint)
 -- <Void>

Note: If you conserved a reference to the ConstraintDesc that you used to create a joint or a spring, the ConstraintDesc

will now be available for use with another joint or spring.

For only springs, you can use the physicsMember.deleteSpring() method. If you attempt to use this method with an

object that is not a spring, a script error occurs. It will fail silently if you use it with a string that is not the name of a

spring.

Angular joint properties

An angular joint between two objects allows those objects to rotate freely to any angle with respect to each other.

However, the distance that separates the two objects is constrained.

For information on how to create, access, and delete an angular joint, see “Joints and springs” on page 330. To

experiment with the way an angular joint will link two rigid objects together, download the movie AngularJoint.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67a4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67a2.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67a7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67a6.html
http://www.stage.adobe.com/support/director/examples/3dExtruder.dir

335ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The AngularJoint.dir movie shows how the movement of two joined objects is constrained

You can use the buttons in the red zone to move the red box and the buttons in the green zone to move the green box.

Note how the distance between the two boxes is maintained, but they are free to rotate independently.

You can alter the stiffness and damping of the angular joint. These values are not limited to 10.0 or 100.0, despite

what the movie shows. These values have been chosen as suitable values for testing in the context of this movie. The

most appropriate values for your projects will depend on the mass of the objects, their friction, and other properties.

A low value for stiffness will allow the objects to move away from their rest-length distance more easily. A low value

for damping will lead to objects oscillating about their rest-length distance.

Note: In Director 11.5, if you reduce damping, you may see no change in the behavior of the angular joint until you

modify the stiffness.

Linear joint properties

A linear joint between two objects allows those objects to move freely to any spatial position with respect to each other.

However, the difference in orientation of the two objects is constrained.

For information on how to create, access, and delete a linear joint, see “Joints and springs” on page 330. To experiment

with the way a linear joint will link two rigid objects together, download the movie LinearJoint.dir.

http://www.adobe.com/support/director/examples/LinearJoint.dir

336ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The LinearJoint.dir movie shows how the movement of two joined objects is constrained

You can use the buttons in the red zone to move the red box and the buttons in the green zone to move the green box.

Note how the two boxes have a tendency to appear in the same orientation, but they are free to move independently

around the surface.

Note: To test rotation around the xAxis and zAxis, double-click on the appropriate buttons. The first click will make the

cube jump into the air, and the second click will make it spin in the air.

You can alter the stiffness and damping of the linear joint. These values are not limited to 100.0, despite what the

movie shows. This range has been chosen as suitable values for testing in the context of this movie. The most

appropriate values for your projects will depend on the mass of the objects, their angularDamping, and other

properties.

A low value for stiffness will allow the objects twist to different orientations more easily. A low value for damping

will lead to the objects oscillating about their shared orientation.

Note: In Director 11.5, if setting both stiffness and damping to zero does not lead to the objects becoming independent.

Spring properties

Springs create a compression or an expansion force between two objects which tend to move them until they are at a

given resting distance from each other.

337ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

For information on how to create, access and delete a spring, see “Joints and springs” on page 330. To experiment with

the way a spring will link two rigid objects together, download the Springs Basics.dir.

The Springs Basics.dir movie shows how a spring can be controlled

The Springs Basics.dir movie has seven screens where you can test the effect of modifying all eight parameters for a

spring.

• restLength defines the distance between the models at which neither a compression nor an expansion force will

act between the two models.

• objectA and objectB define the rigidBody objects connected to each end of the constraint.

• pointA and pointB are the vector positions in the frame of reference objectA and objectB to which the constraint

is to be attached.

• stiffness is a non-negative floating point number to define the strength of the spring.

• damping is a non-negative floating point number to define how much the spring must oscillate before reaching a

rest position.

• flags is a symbol which defines whether the spring must exert a force only when it is compressed

(#kDuringCompression), only when it is extended (#kDuringExpansion), or in both directions (#kBoth).

Additional example

The movie Net using Joints.dir demonstrates how to create a net out of a grid of rigidBody objects held together by

springs.

http://www.adobe.com/support/director/examples/Springs Basics.dir
http://www.adobe.com/support/director/examples/Net using Joints.dir

338ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

A net created from rigidBody objects and springs

D6Joints

Six-degrees-of-freedom joints (D6Joints) are a very powerful tool for creating mechanical interactions between

objects. The six degrees of freedom are:

• Linear movement along the xAxis

• Linear movement along the yAxis

• Linear movement along the zAxis

• Rotation about the xAxis

• Rotation about the yAxis

• Rotation about the zAxis

Each of these types of movement can be locked, limited, or left free.

In addition, you can drive a joint, as if it were attached to a motor. This means that you can make the joint turn about

any of its axes, or force it to advance along any axis. This drive can be controlled and limited in a variety of ways.

Experimenting

The best way to understand all the possibilities of a D6Joint is to experiment with a simple example. Download and

launch the movie 6DOF.dir. You can use this to test each of the motions possible with a D6Joint. You can find details

of the scripting terms to use in “D6Joint method and properties” on page 343.

http://www.adobe.com/support/director/examples/6DOF.dir

339ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Using the 6DOF.dir movie to test the settings for a six-degrees-of-freedom joint

The 6DOF.dir movie is designed with a simple interface that gives you full control of only one type of motion at a time.

Note that many of the sliders in the movie have a logarithmic scale. This means that you can test a whole range of values

from very small to very large, but you cannot select precise values.

In your own projects, you can control all six types of motion independently. After you have learned enough to feel

comfortable with controlling a D6Joint, you can create custom settings for the test joint by typing commands in the

Message window. The custom settings will allow you both to set precise values for each motion, and to control multiple

motions simultaneously. Changes that you make in the Message window will not be reflected in the display in the

movie itself.

When you launch the movie, all six degrees of freedom are locked. You can start by freeing the motions one at a time,

and testing which direction of movement the joint allows for that motion.

Testing one degree of freedom at a time

Note that the main axis of a joint is its zAxis, so the controls for the zAxis have been placed at the top of each group of

controls.

340ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Limited freedom

You must set the limits of a freedom before setting the motion of that freedom to #limited. If you set give a particular

motion limited freedom when the limits are all set to zero, you will see no change when you modify the value of the

limits. If you set any of the limits to a non-zero value, then set the motion of a given freedom to #limited, any changes

that you make to the limits will be respected. If you set all limits to zero, then the motion will become locked again,

regardless of any new limit settings that you apply. You will need to reset the motion to #limited for any new changes

to be taken into account.

The limitValue for angular motions has to be expressed in radians. The interface shows it in degrees.

You can double-click on any slider to reset it to its initial value.

Note that the stiffness is value of 0, which means that the joint is completely rigid. A stiffness value of 0.00001 is

extremely loose, whereas as value of 100000 gives similar behavior to a value of 0.0. If stiffness is zero and

limitValue is zero, then no movement will occur.

If stiffness is low, a motion may exceed its limitValue before easing back. If damping is also low, a freedom with

#limited motion may behave almost as if it were free.

Note: To simplify the interface, the display for #limitValue can vary between 0.0 and 180.0. This gives a good range

for both linear and angular motion, if angular motion were considered in degrees. However, angular limits must be in

the range 0.0 - 3.14159 (or pi). Angular limits need to be defined in radians, not degrees.

Drive

A D6Joint can be driven along each degree of freedom, which means you can provide both a linear and an angular

motion along each of the three axes. For each driven motion there are two types of drives. So, there are twelve

possibilities of which any six can be active at one time. The values for driveType are as follows:

• #position: attempts to move the joint to a given position or orientation. An example is a piston, which pushes in

a given direction, or a door closer that rotates a door back to its closed position after it has been opened.

• #velocity: attempts to move the joint at a constant speed in a given direction. An example is a train wheel. For a

wheel rigidBody, like the one in the 6DOF.dir movie, you can set the joint's axisDrive to slide the wheel along the

track, or you can set its swingDrive to rotate it around its zAxis.

These examples are illustrated below:

341ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Using a #position driveType to set D6Joint to a given distance along an axis, or a given rotation around an axis

Using a #velocity driveType to move a joint along an axis or rotate it around an axis, continuously

When a driveType of #velocity is used, the value of forceLimit determines how fast the joint will accelerate until

it reaches the required speed. If forceLimit is set to zero, the drive will never move. If it is too low, it may take a very

long time to get up to speed.

342ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

When a driveType of #position is used, the value of stiffness determines how responsive the joint is to the

request to move to the desired position. If stiffness is set too low, the effect will be minimal, like attempting to pull

a train using an infinitely extensible elastic band. The precise value will depend on the mass of the rigidBody.

The direction axis that you need to set to move a joint along or around a given axis is not intuitive. For linear

movements:

• axisDrive uses the x component of the driveLinearVelocity, or the drivePosition vectors to move the joint along

the negative zAxis

• normalDrive uses the y component of the driveLinearVelocity or the drivePosition vectors to move the joint along

the negative xAxis

• binormalDrive uses the z component of the driveLinearVelocity or the drivePosition vectors to move the joint

along the negative yAxis

• twistDrive uses the x component of the driveAngularVelocity vector to rotate the joint around the positive zAxis

• twistDrive uses rotation around x axis of the driveOrientation to rotate the joint around the negative zAxis

• swingDrive uses the y component of the driveAngularVelocity vector to rotate the joint around the positive xAxis

• swingDrive uses rotation around y axis of the driveOrientation to rotate the joint along the negative xAxis

• swingDrive uses the z component of the driveAngularVelocity vector to rotate the joint along the positive yAxis

• swingDrive uses rotation around z axis of the driveOrientation to rotate the joint along the negative yAxis

Note also that swingDrive can perform rotation around two different axes at the same time, if both swing1Motion and

swing2Motion are not locked. In 6DOF.dir, these rotations create a movement like a coin spinning on a table (free),

or like a buoy in a harbour, rocked by waves (limited).

Additional example

You can find another example of using D6Joints in the movie Hanging Chains using 6DOF.dir.

http://www.adobe.com/support/director/examples/Hanging Chains using 6DOF.dir

343ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The hanging chains are created by D6Joints locked for any linear motion and free for all angular motion

D6Joint method and properties

Six degrees of freedom joints have one method, and many properties. To make them easier to learn, the properties are

grouped into the following categories:

• Get-only properties

• Anchor properties

• Freedom properties

• Limit properties

• Drive properties

• Drive target properties

• Axis properties

To test all these properties, download, and launch the movie 6DOF.dir. See “D6Joints” on page 338 for detailed

instructions for using this movie.

344ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The 6DOF.dir movie allows you to experiment with a simple D6Joint

createD6Joint() method

To create a joint with six degrees of freedom, use the physicsMember.createD6Joint() method.

Note: Before creating the joint, align the two rigidBody objects with the world's axes, and place them in the appropriate

position relative to each other. When you do so, controlling the axes, along which the various motions can occur, becomes

easier.

Following is the command with the createD6Joint()method:

vJoint = vPhysics.createD6Joint(vName, vRB1, vRB2, vAnchor)

This method creates a D6Joint between two rigid bodies, or between a point in world and a rigid body, and expects the

following values:

• vPhysics: a Physics member

• vName: a unique string, not yet used for the name of any joint in the Physics member

• vRB1: a rigidBody stored within the Physics member

• vRB2: a different rigidBody stored within the Physics member, or VOID

• vAnchor: a position vector defining the point in world space where the joint will be located. The position of this

point will be converted into the local frame of reference of each of the rigidBodies. See “Anchor properties” on

page 345 for details.

Note: The order in which rigidbodies are provided as input to a D6Joint is important with respect to the set joint axis and

the drive values. For example, if the order is rb1, rb2, and the drive-position is vector(10,0,0), the direction in which the

rigid body will move to attain the position is exactly opposite to the direction it will move if the order was rb2, rb1.

To delete a D6Joint, use physicsMember.deleteConstraint().

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f6c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67a7.html

345ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Get-only properties

A D6Joint object has five properties whose value is set at the moment that you call createD6Joint(), and which cannot

be changed later. Attempting to alter the value of these properties will lead to a script error.

• constraint.name

• d6joint.objectA

• d6joint.objectB

• constraint.constraintType (D6Joints are a type of constraint, just like linear and angular joints. The

constraintType for D6Joint is #d6joint)

Anchor properties

A D6Joint object has three properties that define the mutual frame of reference of the joined rigidBody objects.

• d6joint.globalAnchor

• d6joint.localAnchorA

• d6joint.localAnchorB

The Physics simulation uses world space as a frame of reference for all objects that it controls. When you create a

D6Joint, you define a position in world space as the globalAnchor point for the joint. The two rigidBody objects now

share a mutual point of reference: the globalAnchor. Each of the rigidBody objects joined by the joint converts that

worldPosition point into its own local frame of reference. These references are stored in the localAnchorA (for the

first named rigidBody) and localAnchorB (for the second rigidBody).

If the rigidBody objects now move together, with respect to the world, the worldPosition of their globalAnchor will

change. It is “global” only in the sense that it is shared by both rigidBodies in the joint. Each rigidBody will maintain

its own position and orientation relative to the shared globalAnchor point.

If you alter the values of localAnchorA or localAnchorB the associated rigidBody will move to a new position with

the respect to the mutual globalAnchor point.

If you change the value of the globalAnchor the values of localAnchorA or localAnchorB will update to reflect the

current positions of the two rigidBody objects with respect to the new globalAnchor point.

Note: If you create a joint with only one rigidBody and VOID as the other party to the joint, then changing the

globalAnchor point will affect the center of rotation of the sole rigidBody.

Freedom properties

You can set the freedom of each of the six types of motion available to a D6Joint. The following properties can take the

values #locked, #limited, or #free:

• d6joint.axisMotion: refers to linear motion along the main zAxis

• d6joint.normalMotion: refers to linear motion along the xAxis

• d6joint.biNormalMotion: refers to linear motion along the yAxis

• d6joint.twistMotion: refers to angular motion around the main zAxis

• d6joint.swing1Motion: refers to angular motion around the xAxis

• d6joint.swing2Motion: refers to angular motion around the yAxis

See “D6Joints” on page 338 for a demonstration of these different motions.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c19b79-7e7c.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ea5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ea6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67a1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f02.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ec4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ec3.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ee9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ef8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ef9.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ef5.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ef7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ef6.html

346ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

A value of #locked means that the joined rigidBodies will move together for that motion. If one rigidBody is joined

to a fixed point in the world, a value of #locked means that the rigidBody will not move or rotate on the given axis.

A value of #free means that there is no constraint for movement on the given axis. Details for the way a value of

#limited constrains movement are given in the sections below.

Limit properties

A D6Joint object has four properties that can be used to limit the movement of the joint in different ways. Linear

movement on all three axes is controlled by a single property. The other three properties deal with angular movement

around each of the axes.

• d6joint.linearLimit defines how linear movement is limited on all axes

• d6joint.twistLimit defines how angular movement is limited around the main zAxis

• d6joint.swing1Limit defines how angular movement is limited around the xAxis

• d6joint.swing2Limit defines how angular movement is limited around the yAxis

All of these properties take a value that is a property list with the following structure:

[#limitValue: <float>, #stiffness: <float>, #damping: <float>, #restitution: <float>]

For the linearLimit property, limitValue is defined in world units. For the angular limit properties, it is defined in

radians. You can limit angular movement to a maximum of half a turn in either direction, or ±pi radians. This means

that the limitValue for the angular properties must be in the range 0.0 - 3.14159265358979. If you use a value that is

even a small fraction above pi, the entire contents of the list will be ignored.

Note: In the 6DOF.dir movie, the #limitValue is displayed in degrees, not radians, to keep the interface simple,. Using

degrees will fail to give you the results you expect.

For stiffness, a value of 0.0 indicates complete rigidity, while a value of 0.00001 indicates almost total flaccidity.

The default values for all these properties is the same, as shown below.

[#limitValue:0.0, #stiffness:0.0, #damping:0.0, #restitution:0.0]

This means that simply setting (for example) aD6Joint.axisMotion = #limited will have the same effect as

aD6Joint.axisMotion = #locked. Set the appropriate Limit property before setting the required motion to #limit.

Relaunch the 6DOF.dir movie, and execute the following commands in the Message window:

v6DOF = member(3).getConstraint("wheel")
v6DOF.linearLimit = [0, 0.9, 0.3, 0]
v6DOF.binormalMotion = #limited
v6DOF.twistLimit = [0, 2000, 1000, 0]
v6DOF.twistMotion = #limited

Note that the display in the 6DOF.dir movie will not update to reflect these settings.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6eb0.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6eb1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6eaf.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6eb2.html
http://www.adobe.com/support/director/examples/6DOF.dir

347ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Using the 6DOF.dir movie to test custom settings

Now click the Linear Y and Angular Z buttons to test these results.

Drive properties

A D6Joint has 5 different properties that can be used to define how the joint will be driven.

• d6joint.axisDrive defines how linear movement along the main zAxis will be driven

• d6joint.normalDrive defines how linear movement along the joint's xAxis will be driven

• d6joint.binormalDrive defines how linear movement along the joint's yAxis will be driven

• d6joint.twistDrive defines how angular movement around the main zAxis will be driven

• d6joint.swingDrive defines how angular movement around both the x- and the yAxis will be driven

All of these properties take a value that is a property list with the following structure:

[#driveType: <symbol>, #stiffness: <float>, #damping: <float>, #forceLimit: <float>]

You can also use a linear list where the values are arranged in the same order as in the property list above.

driveType

 The values for #driveType are as follows:

• #position: attempts to move the joint to a given position or orientation.

• #velocity: attempts to move the joint at a constant speed in a given direction.

See “Drive” on page 340 for examples and illustrations.

forceLimit

When a driveType of #velocity is used, the value of forceLimit determines how fast the joint will accelerate until

it reaches the required speed. If forceLimit is set to zero, the drive will never move.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6eed.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f00.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6f01.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6efe.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6eff.html

348ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

stiffness

When a driveType of #position is used, the value of stiffness determines how responsive the joint is to the

request to move to the desired position. Be careful not to set stiffness too low.

damping

When a driveType of #position is used, the value of damping determines how much passive resistance there is to a

change in position or orientation. If stiffness is low and damping is low, the joint will oscillate around the target

position after a sudden change in position. If stiffness is low and damping is high, then the joint may fail to move

at all.

Drive target properties

In addition to setting the drive characteristics, you will need to set a target velocity or position. The time it takes to

reach these targets will depend on the drive properties, as described above.

• d6joint.driveLinearVelocity: vector used with axisDrive, normalDrive and binormalDrive to define a target

speed and direction.

• d6joint.drivePosition: vector used with axisDrive, normalDrive and binormalDrive to define a target position.

• d6joint.driveAngularVelocity: vector used with twistDrive and swingDrive to define a target rotation velocity

• d6joint.driveOrientation: axisAngle list used with twistDrive and swingDrive to define a target orientation.

Axis properties

• d6joint.localAxisA

• d6joint.localAxisB

• d6joint.localNormalA

• d6joint.localNormalB

The movie Hanging Chains using 6DOF.dir contains code which alters the values of these properties. However when

this code is commented out (as it is now) the movie still behaves in exactly the same way.

Cloth

What if you want to place an animated flag or a banner in your game with a realistic cloth effect? You can easily

simulate a cloth effect on low density meshes and bitmap images using Director. Director supports enhanced physics

including a complex cloth physics simulation using the AGEIA physics engine.

Your bitmap images can easily be transformed into a cloth in the scene using a few lines of code.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6efc.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6efa.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6efd.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6efb.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ebb.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ebe.html
http://www.google.co.in/search?sourceid=navclient&ie=UTF-8&rlz=1T4GGLL_enIN386&q=d6joint.localNormalA+adobe+director
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6ebc.html

349ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

A bitmap image can be used as a cloth

Creating the cloth

A cloth can be created using the createclothresource function. This function creates a cloth resource from any

existing model reference.

Note: Only models with single mesh can be used to create a cloth resource.

Here is how you create a cloth resource using Lingo:

member ("physics").createclothresource(modelref, [flipNormals])

You can also insert the physics media element by clicking Insert > Media Element > Physics.

The parameters are:

• modelref: The reference to the 3D model that will be used as the cloth.

• flipNormals: An optional parameter specified to flip the normals in the model. Use the flipNormals flag to invert

all the normals after simulation.

During cloth simulation, the normals are calculated according to the order (clockwise/counter-clockwise) in which the

triangles in the model are specified. If the calculated normals are not the same as the model's normal list, the model

may become invisible.

Cloth simulation

350ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

You have successfully created a cloth resource. Now, create a cloth object from that resource. An important point to

remember is that only models with a single mesh can be used to create a cloth.

member ("physics").createcloth(clothname ,clothres, clothmodel, density,thickness)

The parameters are:

• clothname: A string that represents the name of the cloth.

• clothres - A cloth resource created using the createclothresource() method.

• clothmodel - The model that was used in creating the cloth resource.

• density - The density or the mass per unit area of the cloth. Default value is 1.0. Range is from 0 to infinity.

• thickness - The thickness of the cloth. Default value is 0.01. Range is from 0 to infinity. Visual artifacts may appear

if thickness is very small or large.

The following Lingo code illustrates the cloth creation example:

world = member ("physics")
clothres = world.createclothresource (clothmodel)
clothref = world.createcloth ("banner",clothres,clothmodel, 2.0,1.8)

You can also apply a radial force to push or pull the cloth using the applyforceatpos function:

cloth.applyforceatpos(positionVector, magnitude, radius, forcemode

The parameters are:

• positionVector: The position at which the force needs to be applied.

• magnitude: The magnitude of the force.

• radius: The radius in which all the cloth particles will be affected with a quadratic drop off.

• forcemode: Applies either a force or impulse to the cloth.forcemode can either be #force or #impulse.

When will you apply a force on the cloth? In you game, if you want the cloth model to wave due to wind coming from

a particular direction, you can use the applyforceatpos function.

For instance,

-- A force of 1000 is applied at the position(0,0,0).
cloth.applyforceatpos(vector(0,0,0),1000, 2, #force)

You can also control the direction of the applied force to achieve different effects on the cloth:

-- A force of 1000 is applied from the Y-axis at the position(0,0,0).
cloth.applydirectedforceatpos(vector(0,0,0),vector(0,1000,0), 2,#force)

To achieve the best effect, you may need to define the pressure element for the cloth. Director allows you to set pressure

inside a closed cloth (like a balloon) using the enablePressure property. This property has no effect on the open

meshes.

To set the pressure for a closed cloth, use this Lingo code:

cloth.pressure = 2.0

You can provide a value between 0 to infinity. A value less than 1 will cause the cloth mesh to contract and a value

greater than 1 will make the cloth to expand with respect to the rest of the shape. While controlling the pressure inside

a closed cloth, you can also set the bending stiffness:

cloth.bendingStiffness = 0.5

To remove the cloth object from the scene, use the deletecloth function:

351ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

member("physics").deletecloth(clothref)
member("physics").deletecloth(clothname)

The parameters are:

• clothref: The reference to the cloth that needs to be deleted.

• clothname: The name of the cloth that needs to be deleted.

Attaching the cloth to a rigid body

The cloth that you create in your game will most likely collide with a rigid body. In that case, how will you make your

cloth wrap around the rigid body? A proper collision detection between the cloth that you create and a the rigid body

is important.

Director allows you to attach the cloth to a rigid body. However, this method only works with primitive and convex

shapes.

Cloth and rigid body collision

For instance, to attach the cloth to a rigid body, “sphere”, use the attachToRigidBody function:

cloth.attachToRigidBody("sphere")

Similarly, use the detachRigidBody function to detach the cloth from the rigid body.

352ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Sleeping and Waking

When a cloth does not move for a period of time, it is no longer simulated/animated. This state is called the sleeping

state of the cloth.

Can you put the cloth to sleep manually? Yes. However, the cloth automatically 'wakes up' when it is either collided

with an active object, or when one of its properties is changed by the user.

To put the cloth to the sleeping state, use the Lingo code:

cloth.putToSleep()

Similarly, you can wake up the cloth using the wakeup function:

cloth.wakeUp();

For more information on working with the Cloth APIs, see:

• Cloth methods

• Cloth properties.

Cloth animation in Director

Download the movie clothanim.dir to understand the cloth animation feature in Director.

Character controller

When you are building a First Person Shooter (FPS) game, you will need the characters to navigate in the 3D world.

What should happen if the character encounters a wall? What should happen if the character needs to climb some

steps? How will you make the in-game characters interact with the various rigid bodies present in the world? Adobe

Director allows you to perform the character controller actions quite effortlessly.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS5262178513756206-5e81fea0129f3a42a41-8000.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS5262178513756206-3e69561c129f4fe427b-8000.html
http://www.adobe.com/support/director/examples/clothanim.dir

353ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

The character controller API in Adobe Director provides the following functionalities:

• You can control the movement of any character.

• You can make your characters interact with rigid bodies.

• You can control the interaction between different characters.

You can easily define a character controller by following these steps:

1 First, identify the model for the character controller.

2 Determine the axis to be used for the movement of the controller (upVector). The axis can be:

• X-axis, which is vector(1,0,0).

• Y-axis, which is vector(0,1,0).

• Z-axis, which is vector(0,0,1).

A character controller can be created using the createController method:

controllerRef = createController(controllerName,modelName,controllerType,
upVector,slopelimit)

The controller type can be either #box or #capsule. If #capsule is specified, the bounding sphere of the model

is used as the radius for the controller and the bounding box is used for the capsule height. If #box is specified,

the model’s bounding box is used as the controller’s extents.

The slopelimit, signifies the maximum slope that the character can walk. This is expressed as the cosine of the

desired limit angle. A value of 0 disables this function.

Note: The character controller will automatically be treated as a rigid body by the physics engine.

3 Move the character controller using the move method. When the controller is moved using this method, it also

interacts with the rigid bodies in the world. If a callback has been registered by the controller, then it gets called

during the interaction.

When you need to move the character, specify the displacement vector and the distance:

move(displacement, activegroupsList, minDist, sharpness)

The displacement vector is primarily used to move the controller from the current location. The activegroupList

denotes the list of active collision groups that the controller will interact with while moving. minDist, signifies the

minimum distance the controller must travel. If the distance is lesser than this value, the character doesn’t move.

This is used to stop the recursive motion algorithm when the remaining distance to travel is small.

When the controller is moving on an uneven terrain, to prevent the sudden height changes, the motion can be

smoothened using a feedback filter. The sharpness coefficient, defines the amount of smoothing. A smaller value

promotes better smoothing. (1.0 means no smoothing). Here’s an example:

rigidbody1.collisionsgroup = 1
rigidbody2.collisiongroup = 2
myct.move(vector(1,0,0),[1,2], 0.001,1)

The controller interacts with rigidbody1 and rigidbody2 while moving as they are in the list of active collision

groups. If a callback has been registered for a rigid body-controller interaction, it will be invoked.

Download the movie CharacterController.dir to understand the character controller feature in Director.

You can use the arrow keys to move the controller (the green model), Try moving the controller towards the rigid body

(the yellow model). The rigid body will get displaced.

http://www.adobe.com/support/director/examples/CharacterController.dir

354ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Controller and rigid body interaction

You can make the controller ‘step’ on the rigid body

Also, increase the step value to make the controller climb on top of the rigid body. For more information on the

supported character controller methods, see the API documentation.

355ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Events

The collision modifier and the bonesPlayer and keyFrame player modifiers generate events automatically in certain

situations. Some events may be generated only by particular models, others may be generated by any model when the

given situation occurs. You can also use a 3D cast member to generate custom events at specific time intervals for a

specific number of times.

To handler these events, you can register specific scripts or script instance. You can send custom events manually to

registered scripts and instances.

2D events and 3D events

The way events are treated in Director's 2D environment is different from the way they are treated in a 3D world.

First, consider an example of a 2D event. When the user clicks on a sprite, Director generates a #mouseDown event.

The event seeks out an on mouseDown() handler in the following places.

• In one of the behaviors attached to the sprite

• In the Member Script of the cast member in the sprite

• In the Frame Script in the current frame

• In the first Movie Script that contains the appropriate handler

If there is a handler in any of these levels, and if the handler does not explicitly use the pass command to pass the event

on to the next level, the event is not sent any further.

Events in a 3D world work in a different manner.

• 3D events are never generated by the user. They are generated by changes that occur internally in the world, such

as a collision between two models, or a bones animation reaching the end.

• Instead of looking for a pre-defined handler in a pre-defined sequence of locations, a 3D event will send a

programmer-defined message to a programmer-defined script or script or instance.

In other words, in order to react to a 3D event, you need to prepare your scripts in a specific way. If you inherit a project

from another team of developers, you may find that their method for organizing their scripts is very different from

yours.

Registering a script or instance for a 3D event

Imagine that your 3D world contains a character model named “Estragon”, and that your 3D designer has created a

number of different motions to play while this character is standing idle. Imagine that these motions are called

“TapFoot”, “ScratchHead”, “LookRound”, “CheckPhone”, and “StandIdle”. Each of these motions must start and end

with the character in exactly the same position, so that you play the motions seamlessly in any order. To make

Estragon's behavior seem natural, you want to play the “StandIdle” motion most of the time, and occasionally play one

of the other motions, at random intervals.

To set this up, you can create a handler similar to the following one:

356ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on WhatDoIDoNow(aScriptReference, aEvent, aMotionName, aTime)
 vMotions = ["TapFoot","ScratchHead","LookRound","CheckPhone"]
 vRandom = random(20)
 if vRandom > vMotions.count then
 vMotion = "Stand Idle"
 else
 vMotion = vMotions[vRandom]
 end if

 member("3D").model("Estragon").bonesPlayer.play(vMotion)
end WhatDoIDoNow

The idea is that this handler be called automatically each time the current motion comes to an end.

To do this, you need to register the handler as a callback for the Estragon model. If this handler is an a Movie Script,

you can use the following lines of code:

-- Lingo syntax
vModel = member("3D").model("Estragon")
vModel.registerScript(#animationEnded, #WhatDoIDoNow, 0)
// JavaScript syntax
vModel = member("3D").getPropRef("model", 2) // use model index
vModel.registerScript(symbol("animationEnded"), symbol("WhatDoIDoNow"), 0)

The 0 as the third parameter indicates that the on WhatDoIDoNow() handler is in a Movie Script. If the handler is in a

behavior or the instance of a Parent Script, then you can use a pointer to the script object in the place of the 0. Here is

a Lingo example of a Parent Script:

on new(me, aModel)
 aModel.registerScript(#animationEnded, #WhatDoIDoNow, me)
 return me
end new
on WhatDoIDoNow(aScriptReference, aEvent, aMotionName, aTime)
-- See full handler above
end WhatDoIDoNow

Custom handler names, custom locations

You will notice that the handler on WhatDoIDoNow() does not use a standard handler name, and that it can be placed

in any script. You can register many different handlers for the same event if you wish. Each handler will be called in

the order in which it was registered.

Events to register for

There are five 3D events that you can register for.

• #collideAny: Register a handler for the #collideAny event to trigger that handler whenever any two models to

which the collision modifier is attached collide.

• #collideWith: If a model, to which the collision modifier is attached, registers a handler for the #collideWith

event, then the handler will be called only when that model collides with another model to which the collision

modifier is attached.

• #animationStarted: Register a handler for the #animationStarted event to trigger that handler whenever a

bones or keyFrame motion starts playing on a model.

• #animationEnded: Register a handler for the #animationStarted event to trigger that handler whenever a bones

or keyFrame motion stops playing on a model.

357ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• #timeMS: Register a handler for the #timeMSevent to trigger that handler at a given interval a given number of

times.

Ways to register

Use the following methods to register a callback handler:

• Use member3D.registerForEvent() to register a handler to be called whenever the given event is triggered by any

model.

• Use node.registerScript() to register a handler to be called only when the given event is triggered by a particular node

• Use model.collision.setCollisionCallback(...) as a shortcut for model.registerScript(#collideWith, ...)

For example, if you want information about all collisions in the member “3D” to be channeled to the on

CollisionDetected() handler in a Movie Script, use the following commands:

-- Lingo syntax
member("3D").registerForEvent(#CollideAny, #CollisionDetected, 0)
// JavaScript syntax
member("3D").registerForEvent(symbol("CollideAny"), symbol("CollisionDetected"), 0);

If you want information about collisions with model 1 (named “Dark”) in the member “3D” to be channeled to the on

DarkImpact() handler of an instance of the script “Dark Events”, use the following commands:

-- Lingo syntax
vInstance = new script("Dark Events")
member("3D").model("Dark").collision.setCollisionCallback(#DarkImpact, vInstance)
// JavaScript syntax
vInstance = new script("Dark Events");
member("3D").getPropRef("model", 1).getPropRef("collision",
1).setCollisionCallback(symbol("DarkImpact"), vInstance);

To send information on all animations that start playing in member “3D” to an on ShowMotionDetails() handler

in a behavior on sprite 2, use the following code:

-- Lingo syntax
member("3D").RegisterForEvent(#animationStarted, #ShowMotionDetails, sprite 2)
// JavaScript syntax
member("3D").RegisterForEvent(symbol("animationStarted"), symbol("ShowMotionDetails"),
sprite(2));

To call the on SecondThoughts() handler in a behavior in the script “MetroGnome” every 1000 milliseconds exactly

60 times, starting 42 milliseconds from now, use the following code:

-- Lingo syntax
member("3D").RegisterForEvent(#timeMS, #SecondThoughts, script "MetroGnome", 42, 1000, 60)
// JavaScript syntax
member("3D").RegisterForEvent(symbol("timeMS"), symbol("SecondThoughts"), script
"MetroGnome", 42, 1000, 60);

Stopping callbacks

You can use member3D.unregisterAllEvents() to stop all callbacks to all handlers in all scripts for all events.

Note: In Director 11.5, there is no way to unregister just one handler for one event. Design your scripts so that this

functionality is not required.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c3.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf6.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78cd.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78c4.html

358ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Alternatively, you can add a level of indirection and create a Registered Script Manager object to deal with registering

and unregistering scripts. This object can store a look-up table of which scripts and handlers are registered for which

events for which models. If you need to unregister just one handler for one event, your Registered Script Manager object

can call unregisterAllEvents(), and then restore all the other registrations by referring to its look-up table.

Callback parameters

For details of the callback events created by the collision modifier, see “Collision modifier” on page 280. For details of

the event created by the bonesPlayer and keyframePlayer modifiers see, “Animation event callback” on page 358. For

details of the event created by the bonesPlayer and keyframePlayer modifiers, see “timeMS event callback” on

page 359.

Animation event callback

To test the #animationStarted and #animationEnded 3D events, download and launch the movie

AnimationEvents.dir. Check the output in the Message window.

Checking the parameters for registered animation events

The AnimationEvents.dir movie contains two 3D members. Both contain a single bones motion. The behavior on the

3D sprite uses cloneMotionFromCastMember() to copy the motion from the second 3D member into the member

used by the 3D sprite.

http://www.adobe.com/support/director/examples/AnimationEvents.dir

359ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

It then registers itself for two callbacks, one for #animationStarted and one for #animationEnded events.

Regardless of which technique is used to register the script for the events, the same parameters are sent with the

callback.

The callback handler prints information about the event in the Message window. If the original motion has just

finished playing for the first time, it queues the motion again to loop forever, and then makes the “Jump” motion jump

the queue so that it actually plays first. This allows you to see what events are sent by looping and non-looping motions,

and what happens when play() is used when the model.motionPlayer.playList already contains one or more motions.

Callback parameters

• aEvent will be either #animationStarted or #animationEnded

• aMotionName will be the string name of the motion that generated the event

• aCurrentTime will be the current time of the motion of milliseconds. If the motion is playing at the default rate of

1.0, then this will also be the number of milliseconds since it started playing.

For looping animations, the #animationStarted event is issued only for the first loop, not for subsequent loops.

During a blend of two animations, this event will be sent when the blending begins. No #animationEnded event is

ever sent for a looping animation.

Pausing and stopping the animation callback

You can stop the #animationStarted and #animationEnded events from calling the registered handler by executing

either of the following commands in the Message window. Both have far-reaching effects on other functionalities of

the 3D member.

member("3D").unregisterAllEvents()
member("3D").resetWorld()

timeMS event callback

To test the #timeMS 3D event, download and launch the movie timeMS.dir.

#timeMS events are only generated when the 3D member is in a sprite on the Stage

The timerMS.dir movie contains a 3D sprite and a text sprite with the following behavior attached to it:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7939.html
http://www.adobe.com/support/director/examples/timeMS.dir

360ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on beginSprite(me)
 member("3D").RegisterForEvent(#timeMS, #Timer, me, 0, 1000, 0)
end beginSprite
on Timer(me, aType, aDelta, aElapsed, aTotal, aTime)
 vString = \
"#Timer"&RETURN&RETURN& \
"Script ref: "&me&RETURN& \
"Type: "&aType&RETURN& \
"Delta: "&aDelta&RETURN& \
"Elapsed: "&aElapsed&RETURN& \
"Total: "&aTotal&RETURN& \
"Time: "&aTime&RETURN& \
"milliseconds: "&the milliseconds

 sprite(me.spriteNum).member.text = vString
end Timer

Callback parameters

• aType is always 0.

• aDelta is the elapsed time in milliseconds since the last #timeMS event.

• aElapsed is the number of milliseconds since the first #timeMS event occurred. For example, if there are three

iterations with a period of 500 ms, the first iteration’s time will be 0, the second iteration will be 500, and the third

will be 1000.

• aTotal is the total number of milliseconds that will elapse between the registerForEvent() call and the last

#timeMS event. For example, if there are five iterations with a period of 500 milliseconds, the duration is 2500

milliseconds. For tasks with unlimited iterations, the duration is 0.

• aTime is the absolute time in milliseconds since the Director movie started.

These values are idealized. They do not take into account any interruptions made to the Director thread. The display

in the text sprite will change roughly once per second. If you watch the value of the milliseconds, you will see that the

#timeMS event is not called exactly every 1000 milliseconds. In fact, it is called soon after 1000 milliseconds have

elapsed.

Pausing and stopping the #timeMS event

If you click the Hide Member(“3D”) button, the movie will jump to a frame where the 3D member is not displayed in

a sprite. The updates to the text display will now stop. If you now click the Show Member(“3D”) button, the updates

will continue from the point where they left off.

You can stop the #timeMS event from the Message window by executing either of the following commands:

member("3D").unregisterAllEvents()
member("3D").resetWorld()

Both have far-reaching effects on other functional it i es of the 3D member.

361ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

3D mathematics

Manipulating objects in 3D space requires the use of 3D mathematical concepts. Often, Director can take care of the

mathematics for you, without you being aware of it. Many developers will use strategically-placed group nodes as

parents for visible models, in order to avoid explicit use of mathematics.

This section provides recipes for certain operations that require mathematical knowledge. So long as you understand

the purpose of each recipe, you do not need to understand the underlying mathematics.

This section also provides some insight into the mathematical operations, if you want to explore those further.

In Director, 3D mathematics is based on two objects:

• vector(): a three-dimensional representation of a point, a direction, a rotation or a scale. For more information,

see “Vectors” on page 361 and “Vector methods and operations” on page 364.

• transform(): a three-dimensional representation of a frame of reference, including information on a position in

space and the orientation and scale of 3 axes: x, y and z. For more information, see “Transforms” on page 370,

“Transform properties” on page 372, and “Transforms methods” on page 372.

Vectors

A 3D vector describes both direction and location in 3D space. Vector objects include floating-point values for

position along each of the x-, y-, and z-axes. Vectors can be node- or world-relative. If they are node-relative, their x,

y, and z values are relative to the position of the node. If they are world-relative, their x, y, and z directions are relative

to the world.

Vector mathematics operations perform calculations using each of the x, y, and z values. These calculations are useful

for performing intelligent movement and rotation of models. See “Vector methods and operations” on page 364 for

more details.

Creating a vector

You can create a new vector in three different ways

• vector() creates a vector from the given x, y and z values

• randomVector() creates a vector with random x, y and z values, such that the length or magnitude of the vector

is 1.0 world unit.

• vector.duplicate() creates a copy of a source vector at a different location in the computer's memory.

Pointers and duplicates

Vectors are objects. Like other objects, a vector object points to an address in the computer's RAM space where the

properties of the object are stored.

Imagine two variables that refer to the same vector object. If you changing the properties of the vector using one

variable, the other variable will report exactly the same changes, because it is reading the values from the same address

in RAM space.

To test this, try this experiment in the Message window. (For clarity, the output is shown for a Message window set for

JavaScript. Identical commands will work in Lingo.)

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6e62.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7fb4.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75ce.html

362ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

v = randomVector()
<vector(-0.7667, -0.6387, 0.0654)>
u = v
<vector(-0.7667, -0.6387, 0.0654)>
u.x = 10
10
trace(u)
// <vector(10.0000, -0.6387, 0.0654)>
trace(v)
// <vector(10.0000, -0.6387, 0.0654)>

Notice that the value of vector v has changed, even though you did not explicitly modify v. If you want to modify one

copy of a vector without affecting the value of the original, use duplicate().

v = u.duplicate()
v.y = 0
trace(v)
// <vector(10.0000, 0.0000, 0.0654)>
trace(u)
// <vector(10.0000, -0.6387, 0.0654)>

When you retrieve a vector from a transform, you receive a duplicate of the vector. Changing the duplicate will leave

the original unchanged.

t = transform()
v = t.position
v.x = 100
trace(v)
// <vector(100.0000, 0.0000, 0.0000)>
trace(t.position)
// <vector(0.0000, 0.0000, 0.0000)>

If you want to modify the values in the transform, you need to explicitly set the transform's property.

t.position = v
trace(t.position)
// <vector(100.0000, 0.0000, 0.0000)>

Vector properties

Use the following properties to work with vectors:

Here are some examples:

Property Access Description

vector.magnitude get The magnitude of the vector. Equivalent to the length

of the vector.

vector.length get The length of the vector. Equivalent to the magnitude

of the vector.

vector[index] get and set Returns the value of a vector at a specified point in an

index between 1 and 3.

vector.x get and set The x component of a vector.

vector.y get and set The y component of a vector.

vector.z get and set The z component of a vector.

363ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

v = randomVector()
trace(v.length)
-- 1.0000
trace(v.magnitude)
 -- 1.0000
trace(v.x * v.x + v.y * v.y + v.z * v.z)
 -- 1.0000
v[1] = 3
v[2] = 4
v[3] = 12
trace(v)
 -- vector(3.0000, 4.0000, 12.0000)
trace(v.mag
nitude)
 -- 13.0000

Position and translation vectors

A vector is essentially used to express a position in space or a translation through a given distance in a given direction.

A position or translation vector is only meaningful within a parent frame of reference (see “Frames of reference” on

page 202).

A translation expressed as vector(x, y, z) can be thought of as the following movement:

1 A translation of x units parallel with the xAxis of the parent frame of reference

2 A translation of y units parallel to the yAxis of the parent frame of reference, starting from the point arrived at in

step 1

3 A translation of z units parallel to the zAxis of the parent frame of reference, starting from the point arrived at in

step 2

The actual order of the steps is not in fact important.

A position vector can be thought of as the result of a translation that starts from the origin of the parent frame of

reference.

The vector methods and operations described at “Vector methods and operations” on page 364 are only meaningful

when vectors are used to express positions or displacement.

Other uses of vectors

The vector format of (float, float, float) is also useful for expressing quantities other than positions or

translation. For example:

• transform.rotation: the x, y and z properties indicate a sequential rotation around each axis. In other words, a

rotation vector says: “Rotate x degrees around the xAxis, then y degrees around the yAxis, and then z degrees

around the zAxis, in that order”.

• transform.scale: the x, y and z properties provide a shorthand for transform.xAxis.length,

transform.yAxis.length and transform.zAxis.length.

• spotLight.attenuation: the x, y and z properties provide a shorthand for the components of a quadratic

equation used to calculate how the illumination for a spotlight decreases with distance. This can be expressed as

follows:

intensity = attenuation.z * attenuation.z * distance + attenuation.y * distance +
attenuation.x

364ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• object3d.gravity: the x, y and z properties represent the acceleration in world units per second-squared. This is

used by Physics members and particle resources.

Vectors are also used in association with a scalar, as part of a list, to define other

• node.boundingSphere: expressed as [<vector position>, <scalar radius>]

• object3D.axisAngle: expressed as [<rotation vector>, <scalar angle of rotation>]. This is used for

transform.axisAngle, for linearJoint.properties and for D6Joint.driveOrientation.

Note: Performing vector mathematics on vectors that are not used to express a position or a displacement requires a good

understanding of the concepts that these vectors represent. All examples given in this documentation are for operations

performed on positions or displacements.

Vector methods and operations

You can find an alphabetical list of scripting terms to use with vectors at Vector mathematics. Here, the terms are

grouped together by usage.

• Unit vectors

• Comparing vectors

• Distance and angle

• Binary operations

• Uses of binary operations

• Vector products

• Dot product

• Cross product

Note: The vector methods and operations described here are only meaningful when the vectors in question are used to

express positions or translations.

Unit vectors

A unit vector is a vector with a length or magnitude of 1.0 world unit. Unit vectors are useful for indicating a

direction. You can multiply a unit vector by a scalar speed to create a velocity (a speed in a given direction). There are

two methods for converting a vector to a unit vector.

• vector.getNormalized() returns a unit vector with the same direction as the original vector. The original vector is

not changed.

• vector.normalize() modifies the original vector so that its length or magnitude now has a value of 1.0.

Note: Do not confuse a normalized vector and a normal vector. A normal vector is a direction vector that is at right angles

to the surface of a plane or a face. A normal vector need not be a unit vector (but it usually is). A normalized vector is any

vector that has been scaled to be one unit in length.

Before using normalize(), you may want to save the length or magnitude property of the vector in a variable, so

that you can restore the original vector later.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WScf09ce35f85d76b45fe4e6b011d55854fa1-7ff8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a3b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7a3a.html

365ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

-- Lingo syntax
vVector = randomVector()
put vVector
 -- vector(-0.7949, 0.2442, 0.5555)
vLength = random(100)
put vLength
 -- 9
vVector = vVector * vLength
put vVector
 -- vector(-7.1538, 2.1977, 4.9993)
vMagnitude = vVector.magnitude
put vMagnitude
 -- 9.0000
vDirection = vVector.getNormalized()put vDirection
 -- vector(-0.7949, 0.2442, 0.5555)
vVector.normalize()put vVector
 -- vector(-0.7949, 0.2442, 0.5555)

Note: JavaScript does not support mathematical operations for vector objects. In JavaScript, you must write the code to

perform the vector math calculations using the vector's x, y, and z coordinates.

// JavaScript syntax
vVector = randomVector()
<vector(-0.7949, 0.2442, 0.5555)>
vLength = random(100)
9
vVector.x = vVector.x * vLength
-7.153941750526428
vVector.y = vVector.y * vLength
2.197822719812393
vVector.z = vVector.z * vLength
4.999067902565002
trace(vVector);
// <vector(-7.1539, 2.1978, 4.9991)>
vMagnitude = vVector.magnitude;
8.999999148200093
vDirection = vVector.getNormalized()<vector(-0.7949, 0.2442, 0.5555)>)>
vVector.normalize()0
trace(vVector)
// <vector(-0.7949, 0.2442, 0.5555)>

Note: JavaScript uses a different Math library from Lingo, using 32-bit floating point numbers, where Lingo uses 16-bit

floating point numbers for 3D operations. This can lead to slight differences in the least-significant figures.

Comparing vectors

Vectors use floating point numbers. Comparing the equality of two floating point numbers can lead to unexpected

results, if there are small differences between them. Note that JavaScript may be more precise in its evaluations of

equality than Lingo is.

366ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

-- Lingo syntax
put 1.000000000001 = 1.0
 -- 0
put 0.99999999999999 = 1.0
 -- 1
// JavaScript syntax
trace(1.000000000000001 == 1.0);
// false
trace(0.99999999999999999 == 1.0);
// true

To compare vectors it is safer to check if the individual x, y and z values fall within a given range.

-- Lingo syntax
v = vector(-0.01, -64.0, 0.01)
v.normalize()
put v.y
 -- -1.0000
put v
 -- vector(-0.0002, -1.0000, 0.0002)
put v = vector(0, -1, 0)
 -- 0
trace(v.y < -0.9999)
 -- 1
// JavaScript syntax
v = vector(-0.01, -256.0, 0.01)
<vector(-0.0100, -256.0000, 0.0100)>
v.normalize()
0
trace(v.y)
// -1
trace(v)
// <vector(0.0000, -1.0000, 0.0000)>
trace(v == vector(0, -1, 0))
// false
trace(v.y < -0.9999)
// true

Distance and angle

For two vectors that both represent a position in space, it is meaningful to calculate the distance between them. For

two vectors which both represent a translation, it is meaningful to compare their lengths. There are three techniques

that you can use to do this:

• vDistance = vector1.distanceTo(vector2) See vector.distanceTo() for details

• vDistance = (vector1 - vector2).magnitude

• vDistance = (vector1 - vector2).length

Note that it does not matter which order the vectors appear in. The result will be the same.

These operations are not meaningful if both vectors are not position vectors, or if both vectors are not translation

vectors. It makes no sense to calculate the distance between a point and a translation.

367ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

vector1 = vector(3, 4, 5)
vector2 = vector(5, 12, 13)
trace(vector1.distanceTo(vector2))
 -- 11.4891
trace(vector2.distanceTo(vector1))
 -- 11.4891
put (vector1 - vector2).magnitude
 -- 11.4891
put (vector2 - vector1).length
 -- 11.4891

Note: Subtracting one vector for another is not permitted in JavaScript.

For two vectors, both of which represent a translation or a direction, it is meaningful to calculate the angle between

them. See vector.angleBetween() for more information.

The angle between two direction vectors will be in the range 0.0 (if the vectors are parallel) to 180.0 degrees (if they

are pointing in opposite directions).

If one vector is pointing North and the second vector is at 135° to it, you cannot tell whether the second vector is

pointing South-East or South-West. To distinguish between the two cases, you will also need to know which direction

is Up. The vector.crossProduct() (see below) of the two vectors will point either up or down, depending on whether

the second component points more or less East, or not.

Binary operations

A scalar is a one-dimensional number, such as 42, -0.7071, pi or _movie.frameTempo. The table below shows you

what addition, substraction, multiplication, and division operations are permitted between scalars and vectors, vectors

and vectors, and transforms and vectors. Note that some operations are meaningless, and fail silently. Other

meaningless operations lead to a script error.

Operation Description Output

scalar + vector1orvector1 + scalar Returns a new vector equaling

vector(vector1.x+scalar,
vector1.y+scalar, vector1.z+scalar)

A new vector object

scalar - vector1 Returns a new vector equaling vector(scalar-
vector1.x, scalar-vector1.y, scalar-
vector1.z)

A new vector object

vector1 - scalar Returns a new vector equaling

vector(vector1.x-scalar, vector1.y-
scalar, vector1.z-scalar)

A new vector object

vector * scalarorscalar * vector Returns a new vector with the same direction as

vector and a length equal to vector.length *
scalar

A new vector object

vector / scalar Returns a new vector with the same direction as

vector and a length equal to vector.length /
scalar

A new vector object

scalar / vector Operation not supported *** Script error ***

vector1 + vector2 Returns a new vector equal to

vector(vector1.x+vector2.x,
vector1.y+vector2.y,
vector1.z+vector2.z)

A new vector object

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-74a8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7934.html

368ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Uses of binary operations

vector1 - vector2 Returns a new vector representing the displacement

from the position of vector 2 to the position of

vector1.

A new vector object

vector1 * vector2 Returns the dotProduct() of the two vectors. See

below.

A floating-point value

vector1 / vector2 Meaningless operation. 0

transform * vector Returns a new vector that translates, rotates and

scales the vector by the amounts defined in the

transform.

A new vector object

transform + vector

transform - vector

transform / vector

Meaningless operations. 0

vector + transform

vector - transform

vector / transform

Meaningless operations. 0

vector * transform Operation not supported. *** Script error ***

Operation Uses

-vector If the vector is a translation, reverses the direction of the translation.

vServerToReceiver = vReceiver.worldPosition -
vServer.worldPosition

-- (see vector1 - vector2 below)

vReceiverToServer = -vServerToReceiver

vector * scalar Scales a vector

If the vector is a unit direction vector, and the scalar is the distance to travel, the result

is a translation vector.the distance to travel, the result is a translation vector.

vSpaceShip.translate(vDirectionVector * vDistance)

vector / scalar Divides a vector into smaller steps. If the vector is a translation vector and the scalar

is a number of frames, the result will be the translation to move on each frame.

vMovementPerFrame = vTotalMovement / vNumberOfFrames

vector1 + vector2 1) If vector1 is a position and vector2 is a translation, the result is a new position.

vNewPosition = vOldPosition + vTranslation

2) If vector1 and vector2 are both translations, then the result is a new translation

that combines both movements

vDiagonalMotion = vForwardMotion + vSidewaysMotion

Operation Description Output

369ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Vector products

The table above shows that division by a vector is a mathematically meaningless operation. However, there are two

different ways to multiply two vectors together: dot product and cross product. For both operations, Director provides

three different approaches. You can choose one approach for each operation, and use that at all times. For clarity, all

examples will use the most verbose syntax.

Dot product

In mathematics, the dot product of vector u by vector v is written: u.v

The dot product of two vectors creates a scalar that is equivalent to the cosine of the angle between the vectors,

multiplied by the magnitude of each vector.

Note: To visualize a cosine, imagine a ladder propped against a wall. If the ladder is 1 unit long, and the angle between

the ladder and the ground is Angle, then the distance between the ladder and the wall will be cos(Angle). Click here for

more information.

All three of the techniques below will give the same result.

• vDotProduct = vector1 * vector2

• vDotProduct = vector1.dot(vector2)

• vDotProduct = vector1.dotProduct(vector2)

Note that the order of the vectors is not important: vector1.dotProduct(vector2) gives the same result as

vector2.dotProduct(vector1).

The dotProduct() has a number of interesting characteristics:

• For two unit vectors, the dotProduct() is equivalent to the cosine of the angle between the vectors.

• For two vectors at exactly right angles to each other, the dotProduct() is zero.

• If you have a vector position on a plane P, a unit vector normal to the plane N, and a vector point in space Q, then

the distance from Q to the nearest point on the plane is (Q - P).dotProduct(N).

• Imagine that you have an equation with vectors on both sides. You can simplify the equation by taking the

dotProduct() of both sides by a vector that is perpendicular to one of the vectors on one side.

vector1 - vector2 1) If vector1 and vector2 are both position vectors, then the result is a translation

vector that travels from vector2 to vector1.

vPathFromPoint2ToPoint1 = vPoint1 - vPoint2

2) If vector1 is a position and vector2 is a translation, the result is a new position,

resulting from traveling backwards along the translation vector

vPreviousPosition = vCurrentPosition +
vTranslationFromPreviousPosition

3) If vector1 and vector2 are both translations, then the result is a new translation

equivalent to traveling forwards along vector1 and then backwards along

vector2.

vector1 * vector2 See “Dot product” on page 369.

transform * vector Allows you to change the frame of reference of a vector. See “Transforms methods”

on page 372.

Operation Uses

http://nonlinear.openspark.com/tutorials/trig/

370ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

You find examples that use these characteristics at “3D mathematics recipes” on page 378.

Cross product

In mathematics, the cross product of vector u by vector v is written: u x v

The cross product of two vectors creates a new vector that is at right angles to both vectors. Its length will depend on

both the angle between the vectors and their magnitude. In most cases, you will be interested in the direction of the

crossProduct and not its length.

All three of the techniques below will give the same result.

• vCrossProduct = vector1.cross(vector2)

• vCrossProduct = vector1.crossProduct(vector2)

• vCrossProduct = vector1.perpendicularTo(vector2)

To visualize the direction of the output vector, use the thumb, index finger and middle finger of your right hand. (If

you are left-handed, you must still use your right hand). Point your thumb in the direction of vector1, your index

finger in the direction of the vector2, and turn your middle finger at right angles to both of the input vectors.

Note: The order in which you use the vectors is important. Imagine that the input vectors point upwards and to the right.

If you point your thumb upwards and your index finger to the right, your middle finger will point away from you. If you

point your thumb to the right and your index finger upwards, your middle finger will point towards you.

The crossProduct is useful for determining the axis of a rotation. Imagine that you have a spaceship pointing at planetA

and you want to turn it to point at planetB, using the least amount of fuel. You can define two vectors:

vToPlanetA = vPlanetA.worldPosition - vSpaceShip.worldPosition
vToPlanetB = vPlanetM.worldPosition - vSpaceShip.worldPosition

You can now obtain the axis of rotation using crossProduct():

vAxisOfRotation = vToPlanetA.crossProduct(vToPlanetB)

When you turn around an axis, you use a different right-hand rule. Point your thumb in the direction of the axis and

curl your fingers: your fingers will point in the direction of positive rotation. Imagine that the spaceship is pointing at

planetA straight ahead of you, and that planetB is off to your right and slightly downwards. With your right hand, point

your thumb forwards and your index finger to the right and downwards. Your middle finger will probably now be

pointing to the ground just beneath you. That is the direction of the axis of rotation.

Point your right thumb in the direction of the axis of rotation and point your fingers forward. curl your fingers round.

Now curl your fingers round: they will turn in the direction your imaginary spaceship needs to turn in order to point

at the imaginary planetB.

It takes just two more lines to put your spaceship on target:

vAngleOfRotation = vToPlanetA.angleBetween(vToPlanetB)
vSpaceShip.rotate(vSpaceShip.worldPosition, vAxisOfRotation, vAngleOfRotation)

Transforms

In this section and in the following sections, the terms are grouped together by usage and by type.

371ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

To experiment with transforms, download and open the movie 3DMathematics.dir. The movie contains a number of

scripts that you may find useful. In particular, the OS 3DeBug script contains a showTransform() handler you can

use to display transform data neatly in the Message window.

Creating a transform

There are three ways to create a new transform object.

• vNewTransform = transform()

• vNewTransform = vExistingTransform.duplicate()

• vNewTransform = node.getWorldTransform()

See transform(), transform.duplicate() and node.getWorldTransform() for details.

Like vectors, transforms are objects. See the “Pointers and duplicates” on page 361 for details of the implications of this.

Visualizing a transform

A transform represents the position, rotation and scale of an object in 3D space. With the 3DMathematics.dir movie

open, try the following in the Message window:

t = transform()
t.position = vector(2, 3, 5)
t.rotation = vector(0, 60, 0)
t.scale = vector(0.1, 1, 10)
put t
 -- transform(0.05000,0.00000,-0.08660,0.00000, 0.00000,1.00000,0.00000,0.00000,
8.66025,0.00000,5.00000,0.00000, 2.00000,3.00000,5.00000,1.00000)
put showTransform(t)
 -- "
 0.05000 0.00000 -0.08660 0.00000
 0.00000 1.00000 0.00000 0.00000
 8.66025 0.00000 5.00000 0.00000
 2.00000 3.00000 5.00000 1.00000
"

The position and axes of a transform

Here is the same transform arranged in a table with explanatory headers:

You can recognize that the last row of numbers in the transform represents the position vector that you set. The other

lines represent the direction and scale of the x, y and z axes of the transform in world coordinates.

The transform has been rotated around its yAxis, and scaled by 1.0 along its yAxis, so the transform's yAxis is pointing

upwards 1.0 units on the world's yAxis. If you compare the figures in the first and third lines, you can see that the xAxis

has been scaled by 0.1, and the zAxis has been scaled by 10, and that these axes are now at an angle to the world's axes.

world x-axis world y-axis world z-axis direction (0) or position

(1)?

transform x-axis 0.05 0.0 -0.0866 0

transform y-axis 0.0 1.0 0.0 0

transform z-axis 8.66 0.0 0.5 0

position 2.0 3.0 5.0 1

http://www.adobe.com/support/director/examples/3DMathematics.dir
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-75ce.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b9b.html

372ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Transform properties

Transforms have four properties that you can both get and set:

• transform.position: a vector that defines the position of the transform with respect to its frame of reference.

• transform.rotation: a vector that defines the rotation of the transform with respect to its frame of reference.

• transform.scale: a vector that defines the scale of the transform with respect to its frame of reference.

• transform.axisAngle: a list with the format [<axis direction vector>, <float angle of rotation about

axis>]. This provides the same information as transform.rotation, but in a different format. Changing the

rotation will update the axisAngle and vice versa.

Transforms also have three properties that you can get but not set:

• transform.xAxis

• transform.yAxis

• transform.zAxis

See the other articles in this section for a hands-on explanation of using these properties.

Note: The camera looks back down zAxis of its world transform. In an activity with a first person camera, you can use -

sprite("3D").camera.getWorldTransform().zAxis to tell in which direction the main character is facing. (Note

the negative sign).

The view displayed in the sprite will be on a plane whose normal is identical to the zAxis of the camera.

Transforms methods

The scripting terms are grouped together by usage in this section.

• Positioning a transform

• Operations with transforms

• Using a transform to set a frame of reference

• Parent and child relationships with no nodes

• Applying one transform to another

• Interpolation

Positioning a transform

• transform.translate()

• transform.rotate()

• transform.scale()

All these methods accept two types of parameters:

• A vector

• Three separate x, y, and z numbers

The rotate() method also allows a third set of parameters:

vectorPosition, vectorAxis, scalarAngle

For example, the three rotate() commands below have an identical effect:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7284.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78a7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-789e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6b43.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c17ed9-7989.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67e2.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-67df.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7bf2.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78a7.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-789e.html

373ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

vTransform = member("3D").model(1).transform
vTransform.rotate(0, 45, 0)
vTransform.rotate(vector(0, 45, 0))
vTransform.rotate(vTransform.position, vTransform.yAxis, 45)

Nodes have similar methods. However, there are two main differences.

Nodes have a parent property. Transforms do not. When you apply the translate(), rotate(), or scale() methods

to a transform, you cannot use a additional frame of reference parameter such as #self, #parent or #world. If you do so,

a script error will occur.

The node.scale() method will also accept a single scalar value, to scale the node uniformly on all three axes. In Director

11.5, if you attempt to use a single scalar value as the parameter for the transform.scale() method, you will get a

script error.

See “Translation” on page 206 and “Rotate()” on page 209 for examples of using the translate() and rotate()

methods.

Operations with transforms

As the table below shows, there are many operations that will fail silently when used with transforms, and two that are

useful.

scalar + transform

scalar - transform

scalar / transform

Meaningless operations. 0

scalar * transform Operation not supported. *** Script error ***

transform * vector Returns a new vector that is equivalent to the

worldPosition of vector when vector is

applied to the frame of reference defined by

transform

(see “Using a transform to set a frame of

reference” on page 374)

A new vector object

transform + vector

transform - vector

transform / vector

Meaningless operations. 0

vector + transform

vector - transform

vector / transform

Meaningless operations. 0

vector * transform Operation not supported. *** Script error ***

transform1 * transform2 Returns a new transform equivalent to

transform2.multiply (transform1) or

transform1.preMultiply
(transform2)

(see “Parent and child relationships with no

nodes” on page 374)

A new transform

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-789e.html

374ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Using a transform to set a frame of reference

Imagine that you have a bead, a small box, and a desk. You place the box at the corner of your desk, and align it with

the edges of the desk. The box and the desk now have the same frame of reference. You glue the bead inside the box at

a particular position relative to the desk. You can use a vector to represent the position of the bead. Now you pick up

the box, twist it around, and place it on top of one of the other objects on your desk. The bead is still in the same

position relative to the box, but the box is in a new position relative to the desk. You can represent the position of the

box by a transform.

To determine the position of the bead relative to the desk, you can multiply the box's transform by the bead's vector.

vBeadPositionRelativeToDesk = vBoxTransform * vBeadVector

To test this in Lingo, download, and open the movie 3DMathematics.dir, then execute the following commands in the

Message window. This simulates gluing a bead inside a box at the position vector(13, 17, 19), and then turning

the box through 90° and placing it in a new position and a new height, represented by vector(5, 7, 11).

vBeadVector = vector(13, 17, 19)
vBoxTransform = transform()
vBoxTransform.position = vector(5, 7, 11)
vBoxTransform.rotate(0, 90, 0)
put ShowTransform(vTransform1)
 -- "
 -0.00000 0.00000 -1.00000 0.00000
 0.00000 1.00000 0.00000 0.00000
 1.00000 0.00000 -0.00000 0.00000
 11.00000 7.00000 -5.00000 1.00000
"
put vBoxTransform * vBeadVector
 -- vector(30.0000, 24.0000, -18.0000)

The box's transform has turned 90° around the world's yAxis, so the box's xAxis is now pointing down the desk's

negative zAxis, and the box's zAxis is pointing along the desk's xAxis. The bead inside the box has turned in the same

way. Its x value of 13 is subtracted from the box's z value of -5 to place the bead -18 units along the desk's zAxis. The

bead's z value of 19 has been added to the box's x value of 11, to place the bead 30 units along the desk's xAxis. The box's

yAxis is still facing upwards, so the bead's new vertical position has increased by the elevation of the box: 17 + 7 = 24.

Parent and child relationships with no nodes

Multiplying one transform by another has the same effect as setting one node to be the child of another. To put it

another way: when one node is made the child of another, the transforms of the two nodes are multiplied together.

To test this, execute the following commands in the Message window. Your commands will create a second transform,

and apply the two transforms to two groups. You will then make one group the parent of the other, and compare the

value of getWorldTransform() for the child node with the result of multiplying the two transforms together.

http://www.adobe.com/support/director/examples/3DMathematics.dir

375ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

vBeadTransform = transform()
vBeadTransform.position = vBeadVector
put ShowTransform(vBeadTransform)
 -- "
 1.00000 0.00000 0.00000 0.00000
 0.00000 1.00000 0.00000 0.00000
 0.00000 0.00000 1.00000 0.00000
 13.00000 17.00000 19.00000 1.00000
"
member("3D").resetWorld()
vBoxGroup = member("3D").newGroup("Box")
vBeadGroup = member("3D").newGroup("Bead")
vBoxGroup.transform = vBoxTransform
vBeadGroup.transform = vBeadTransform
vBoxGroup.addChild(vBeadGroup, #preserveParent)
put ShowTransform(vBeadGroup.getWorldTransform())
 -- "
 -0.00000 0.00000 -1.00000 0.00000
 0.00000 1.00000 0.00000 0.00000
 1.00000 0.00000 -0.00000 0.00000
 30.00000 24.00000 -18.00000 1.00000
"
put ShowTransform(vBoxTransform * vBeadTransform)
 -- "
 -0.00000 0.00000 -1.00000 0.00000
 0.00000 1.00000 0.00000 0.00000
 1.00000 0.00000 -0.00000 0.00000
 30.00000 24.00000 -18.00000 1.00000
"

Identity and inverse

When you first create a transform, it is placed at the center of its frame of reference, with its axes aligned to the frame

of reference, and with a scale of 1.0. This is the “identity” position for a transform. When you first create a model, it

will be given an identity transform.

To return a transform to its original state, you can use this command: transform.identity()

You can use transform.inverse() to generate a new transform that will undo the effect of a given transform. If a

transform and its inverse are multiplied together, the result is the identity transform.

To convert a transform into its inverse, you can use transform.invert().

Here are some experiments that you can try in the Message window:

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-73ed.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79bd.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79c2.html

376ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

t = transform()
t.position = vector(2,3,5)
t.rotation = vector(30, 45, 60)
t.scale = vector(0.5, 1.0, 2.0)
trace(showTransform(t))
 -- "
 0.17678 0.30619 -0.35355 0.00000
 -0.57322 0.73920 0.35355 0.00000
 1.47840 0.56066 1.22474 0.00000
 2.00000 3.00000 5.00000 1.00000
"
i = t.inverse()
trace(showTransform(i))
 -- "
 0.70711 -0.57322 0.36960 0.00000
 1.22474 0.73920 0.14017 0.00000
 -1.41421 0.35355 0.30619 0.00000
 1.98262 -2.83892 -2.69063 1.00000
"
put showTransform(t*i) -- this creates an identity transform
 -- "
 1.00000 -0.00000 -0.00000 0.00000
 0.00000 1.00000 -0.00000 0.00000
 0.00000 0.00000 1.00000 0.00000
 0.00000 0.00000 0.00000 1.00000
"

Note: JavaScript does not support the multiplication of transforms.

i.invert() -- i will now be identical to t
trace(showTransform(i))
 -- "
 0.17678 0.30619 -0.35355 0.00000
 -0.57322 0.73920 0.35355 0.00000
 1.47840 0.56066 1.22474 0.00000
 2.00000 3.00000 5.00000 1.00000
"
t.identity()
trace(showTransform(t))
 -- "
 1.00000 0.00000 0.00000 0.00000
 0.00000 1.00000 0.00000 0.00000
 0.00000 0.00000 1.00000 0.00000
 0.00000 0.00000 0.00000 1.00000
"

Applying a preliminary manipulation to a transform

The following commands reset the transform to its identity state, apply a modification to the identity transform, and

then re-apply the original transform to the new state.

• transform.preTranslate()

• transform.preRotate()

• transform.preScale()

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7840.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78a8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-78a4.html

377ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Applying one transform to another

As illustrated in the “Parent and child relationships with no nodes” on page 374 section above, the * (multiply)

operator can generate a new transform by applying one transform to another. If you prefer to modify one of the

original transforms you can use one of the following methods:

• transform.multiply()

• transform.preMultiply()

To test this in the Message window, create a transform t that represents a translation and a transform r that represents

a rotation:

t = transform()
t.translate(13, 17, 19)
r = transform()
r.rotate(90, 0, 0)

Generate a transform that represents a rotation followed by a translation, without changing the original transforms.

Note that the y and the z axes change as the initial rotation occurs around the vector(0, 0, 0) and then the

translation t is applied.

put showTransform(t*r)
 -- "
 1.00000 0.00000 0.00000 0.00000
 0.00000 -0.00000 1.00000 0.00000
 0.00000 -1.00000 -0.00000 0.00000
 13.00000 17.00000 19.00000 1.00000
"

Create a duplicate of the rotation transform, and apply the translation to it using multiply(). This will modify the

duplicate rotation transform.

r2 = r.duplicate()
r2.multiply(t)
put showTransform(r2)
 -- "
 1.00000 0.00000 0.00000 0.00000
 0.00000 -0.00000 1.00000 0.00000
 0.00000 -1.00000 -0.00000 0.00000
 13.00000 17.00000 19.00000 1.00000
"

Generate a transform that represents a translation followed by a rotation, without modifying the original transforms.

put showTransform(r*t)
 -- "
 1.00000 0.00000 0.00000 0.00000
 0.00000 -0.00000 1.00000 0.00000
 0.00000 -1.00000 -0.00000 0.00000
 13.00000 -19.0000017.00000 1.00000
"

Use r.preMultiply() to apply the translation first, followed by the rotation, modifying the r transform in the

process.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6cc8.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6c73.html

378ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

r.preMultiply(t)
put showTransform(r)
 -- "
 1.00000 0.00000 0.00000 0.00000
 0.00000 -0.00000 1.00000 0.00000
 0.00000 -1.00000 -0.00000 0.00000
 13.00000 -19.00000 17.00000 1.00000
"

Interpolation

The following methods allow you to calculate a transform that is partway between one transform and another.

• transform.interpolate()

• transform.interpolateTo()

These methods are illustrated with example movies at “Interpolation” on page 264.

3D mathematics recipes

This section provides handlers for some common 3D manipulations. You can find all these handlers and more in the

scripts in the movie 3DMathematics.dir.

• Calculating the normal to a plane

• Getting the shortest distance to plane

• Getting the closest point in a plane

• Mapping a vector to a plane

• Finding where a ray intersects a plane

• Getting a bearing

• Reflecting a vector in a plane

• Rotating a vector position around an axis

• Converting a world transform to a local transform

• Get bounding box

Using RayCutsPlane() to drag a model across an arbitrary plane

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79c1.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79d9.html
http://www.adobe.com/support/director/examples/3DMathematics.dir

379ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Defining a plane

To define a plane, you need two vectors:

• A position on the surface of the plane

• A direction vector normal to the surface of the plane.

A normal is a vector that is at right angles to the surface of a plane or a face in all directions. If you know three points

on the surface of the plane that form a triangle, you can calculate the normal. Each face of the mesh of a model has

three vertex points.

Calculating the normal to a plane

Here is a handler that calculates the normal to a plane, given three points on the plane. This technique is used in the

movie MeshDeform.dir.

on GetNormal(aVertex1, aVertex2, aVertex3) ----------------------
 -- INPUT: <aVertex1>, <aVertex2>, <aVertex3> must all be vector
 -- positions that together define a triangle. (They
 -- must not all lie on the same straight line). They
 -- are considered to be listed in a counter-clockwise
 -- order, when looked at from the front.
 -- OUTPUT: Returns a unit vector that is at right angles to all
 -- vectors between the three vertex points. Together
 -- with any one of these vertex points, the normal
 -- defines a plane.

 vVectorA = aVertex2 - aVertex1
 vVectorB = aVertex3 - aVertex1
 vNormal = vVectorA.crossProduct(vVectorB)
 vNormal.normalize()

 return vNormal
end GetNormal

Getting the shortest distance to a plane

Suppose you have a Fridge Magnet activity. You know that the magnet is strong enough to jump to the fridge if it is

less than a given distance away. How do you know when the magnet is near enough to the surface of the fridge to jump?

Suppose you want to set off an alarm when the user's avatar gets within a certain distance of a wall. How do you know

when to set off the alarm?

The following handler can help you solve these questions.

http://www.adobe.com/support/director/examples/MeshDeform.dir

380ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on GetDistanceToPlane(aPointInSpace,aPointOnPlane,aNormalToPlane)
 -- INPUT: All parameters must be vectors
 -- <aPointInSpace> and <aPointOnPlane> must be position
 -- vectors
 -- <aNormalToPlane> must not have a length of zero
 -- OUTPUT: Returns the distance from aPointInSpace to the
 -- closest point in the plane

 vNormal = aNormalToPlane.getNormalized()
 vPlaneToPoint = aPointInSpace - aPointOnPlane
 vDistance = vPlaneToPoint.dotProduct(vNormal)

 return vDistance
end GetDistanceToPlane

Getting the closest point in a plane

Where will the fridge magnet jump to when the user releases it? The following handler uses the

GetDistanceToPlane() to find the closest position rather than the distance:

on GetClosestPointInPlane(aPosition,aPointOnPlane,aNormalToPlane)
 -- INPUT: All parameters must be vectors
 -- <aPosition> and <aPointOnPlane> must be position
 -- vectors
 -- <aNormalToPlane> must not have a length of zero
 -- OUTPUT: Returns the closest point in the plane to aPosition

 vNormal = aNormalToPlane.getNormalized()

 vDistance = GetDistanceToPlane(\
aPosition, \
aPointOnPlane, \
vNormal)

 vPointInPlane = aPosition - vNormal * vDistance

 return vPointInPlane
end GetClosestPointInPlane

Mapping a vector to a plane

Imagine that you have an inclined plane with a ball on it. The force of gravity acts vertically on the ball. What

proportion of that force acts parallel to the plane to make the ball roll?

Imagine that you have a pole in the ground at an arbitrary angle, and that the sun is directly overhead. What will be

the length and direction of the pole's shadow?

You can use following handler to solve both these questions:

381ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on GetVectorComponentInPlane(aDirectionVector, aPlaneNormal) ----
 -- INPUT: <aVector> and <aPlaneNormal> must both be direction
 -- vectors
 -- OUTPUT: Returns a vector which represents the component of
 -- aVector at right angles to aNormal

 vMagnitude = aDirectionVector.magnitude
 aDirectionVector = aDirectionVector.getNormalized()
 aPlaneNormal = aPlaneNormal.getNormalized()

 vCosine = aDirectionVector.dotProduct(aPlaneNormal)
 vSine = sqrt(1 - vCosine * vCosine)
 vCrossInPlane = aDirectionVector.crossProduct(aPlaneNormal)
 vPerpendicular = aPlaneNormal.crossProduct(vCrossInPlane)
 vPerpendicular.normalize()
 vComponent = vPerpendicular * vSine * vMagnitude

 return vComponent
end GetVectorComponentInPlane

Finding where a ray intersects a plane

The following handler is demonstrated in the movie 3DMathematics.dir. It is useful for many dragging operations.

Note: Click here for the mathematical explanation.

http://www.adobe.com/support/director/examples/3DMathematics.dir
http://softsurfer.com/Archive/algorithm_0104/algorithm_0104B.htm#Line-Plane%20Intersection

382ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on RayCutsPlane(aRayOrigin,aRayDirection,aPointOnPlane,aNormal)--
 -- INPUT: All parameters must be vectors
 -- <aRayOrigin> and <aPointOnPlane> must be position
 -- vectors
 -- <aRayDirection> and <aNormal> must be unit
 -- direction vectors
 -- ACTION: Calculates where a ray starting at aRayOrigin and
 -- travelling in aRayDirection passes through a plane
 -- defined by aPointOnPlane and aNormal
 -- OUTPUT: Returns a list. This may be empty if aRayDirection
 -- is parallel to the plane. If not, it will contain
 -- one position vector representing the intersection
 -- SEE: <http://softsurfer.com/Archive/algorithm_0104/
 -- algorithm_0104B.htm#Line-Plane%20Intersection>

 vIntersection = []

 vRayDotNormal = aRayDirection.dotProduct(aNormal)
 if not vRayDotNormal then
 -- The dot product of two perpendicular vectors is zero. If
 -- the ray and the normal to the plane are at right angles to
 -- each other, they do not intersect (or they intersect
 -- everywhere)
 return vIntersection
 end if

 vPointToOrigin = aRayOrigin - aPointOnPlane
 vNormalDotPointToOrigin = aNormal.dotProduct(vPointToOrigin)
 vDistanceAlongRay = -vNormalDotPointToOrigin / vRayDotNormal

 vPlanePoint = aRayOrigin + aRayDirection * vDistanceAlongRay

 vIntersection.append(vPlanePoint)

 return vIntersection
end RayCutsPlane

Getting a bearing

In a flight simulator, you may wish to display the current compass bearing of the plane. The handler below will provide

the appropriate value.

383ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on GetMappedBearing(aDirection, aNorth, aUp) --------------------
 -- INPUT: <aDirection> and <aNorth> must both be non-zero-
 -- length direction vectors
 -- <aUp> may be a direction vector. If not, a vertical
 -- yAxis is assumed
 -- ACTION: Projects aNorth and aDirection onto a plane
 -- orthogonal to aUp, then determines the angle between
 -- these two projected directions. Adjusts the angle
 -- if aDirection has a positive component towards the
 -- West
 -- OUTPUT: Returns an angle between 0.0 and 360.0, representing
 -- the angle about the aUp axis that an object facing
 -- in aDirection will have to turn in order to face
 -- North.

 if ilk(aUp) <> #vector then
 -- Set aUp to vector(0,0,1) for a world with a vertical zAxis
 aUp = vector(0, 1, 0)
 end if

 -- Map aNorth onto the plane orthogonal to aUp
 vCross = aNorth.cross(aUp) -- East
 if not vCross.magnitude then
 -- Gimbal lock: aNorth is parallel to aUp. The bearing is
 -- undefined
 return 0.0
 end if

 aNorth = aUp.cross(vCross)

 -- Map aDirection onto the plane orthogonol to aUp
 vCross = aDirection.cross(aUp)
 if not vCross.magnitude then
 -- Gimbal lock: aNorth is parallel to aUp. The bearing is
 -- undefined
 return 0.0
 end if

 aDirection = aUp.cross(vCross)

 -- Find the angle to turn from aDirection around the aUp axis,
 -- in order to face North
 vAngle = aNorth.angleBetween(aDirection)
 vCross = aNorth.crossProduct(aDirection)
 if aUp.angleBetween(vCross) < 90.0 then
 vAngle = 360.0 - vAngle
 end if

 return vAngle
end GetMappedBearing

Reflecting a vector in a plane

If you want to bounce a ray or a moving ball of a plane, you can use the following handler:

384ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on ReflectVectorInPlane(aVector, aPlaneNormal) ------------------
 -- INPUT: <aVector> and <aPlaneNormal> must both be direction
 -- vectors
 -- OUTPUT: Returns a vector which represents aVector after it
 -- is reflected in a fully elastic collision with a
 -- plane whose orientation is defined by aPlaneNormal

 vMagnitude = aVector.magnitude
 aDirectionVector = aVector.getNormalized()
 aPlaneNormal = aPlaneNormal.getNormalized()

 vCosine = -(aDirectionVector * aPlaneNormal)
 vSine = sqrt(1 - vCosine * vCosine)
 vCrossInPlane = aVector.cross(aPlaneNormal)
 vPerpendicular = aPlaneNormal.cross(vCrossInPlane)
 vPerpendicular.normalize()
 vComponent = vPerpendicular * vSine * vMagnitude

 vReflection = aPlaneNormal * vCosine + vComponent

 return vReflection
end ReflectVectorInPlane

Rotating a vector position around an axis

There is no built-in command to rotate a vector. However, you can use a vector as the position property of a transform,

and then rotate the transform, as demonstrated in the following handler:

on RotateVector(aVector, aCenter, aAxis, aAngle) ---------------
 -- INPUT: <aVector>, <aCenter> and <aAxis> must be vectors.
 -- aAxis should have a non-zero length
 -- <aAngle> must be a scalar
 -- OUTPUT: Returns a vector representing the position of
 -- aVector after it has been rotated bay aAngle around
 -- an axis parallel to aAxis

 vTransform = transform()
 vTransform.position = aVector
 vTransform.rotate(aCenter, aAxis, aAngle)

 return vTransform.position
end RotateVector

It can be useful if you want to rotate a face around one of its edges, or to find a point at a given distance from an axis

in a given direction. This technique is used in the movie MeshDeform.dir.

Converting a world transform to a local transform

Imagine that you wish to set the world transform of one model to that of another node that has a different parent.

Imagine also that you do not want to change the parent of the model that you are moving. You can use the handler

below to calculate the transform to apply to the moving model, within its own frame of reference.

This feature is demonstrated in the movie ParentChain.dir.

http://www.adobe.com/support/director/examples/MeshDeform.dir
http://www.adobe.com/support/director/examples/ParentChain.dir

385ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

on GetLocalTransform(aNode, aWorldTransform) --------------------
 -- INPUT: <aNode> must be a node object
 -- <aWorldTransform> must be a transform within the
 -- world frame of reference
 -- OUTPUT: Returns a transform in aNode's frame of reference
 -- that will set its world transform to aWorldTransform

 vFrameOfReference = aNode.parent.getWorldTransform()
 vInverse = vFrameOfReference.inverse()

 vLocalTransform = vInverse * aWorldTransform

 return vLocalTransform
end GetLocalTransform

Get bounding box

To obtain the coordinates of the smallest axis-aligned box that a given model will fit into, use the following handler:

on GetBoundingBox(aModel, aFrameOfReference) --------------------
 -- INPUT: <aModel> must be a model
 -- <aFrameOfReference> may be a transform, VOID or
 -- #parent. Any other value will use
 -- aModel.getWorldTransform()
 -- ACTION: Calculates the maximum and minimum positions of the
 -- vertices in aModel, along each of the axes.
 -- OUTPUT: Returns a property list with the format:
 -- [#minX: <float>,
 -- #maxX: <float>,
 -- #minY: -float>,
 -- #maxY: <float>,
 -- #minZ: <float>,
 -- #maxZ: <float>]

 vBoundingBox = [:]

 vMinX = the maxInteger
 vMaxX = -vMinX
 vMinY = vMinX
 vMaxY = vMaxX
 vMinZ = vMinX
 vMaxZ = vMaxX

 case ilk(aFrameOfReference) of
 #void: -- use transform()
 #transform:
 vTransform = aFrameOfReference
 #symbol:
 case aFrameOfReference of
 #world:
 vTransform = aModel.getWorldTransform()
 #parent:
 vTransform = aModel.transform
 #self: -- use transform()
 end case

386ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

 otherwise
 vTransform = aModel.getWorldTransform()
 end case

 if not vTransform then
 vTransform = transform()
 end if

 vModifiers = aModel.modifier
 if not vModifiers.getPos(#meshDeform) then
 aModel.addModifier(#meshDeform)
 vRemove = TRUE

 else
 vRemove = FALSE
 end if

 -- Iterate through the meshes
 vMeshCount = aModel.shaderList.count
 repeat with ii = 1 to vMeshCount
 vVertexList = aModel.meshDeform.mesh[ii].vertexList
 vVertexCount = vVertexList.count

 repeat with jj = 1 to vVertexCount
 vVertex = vVertexList.getAt(jj)
 vWorldPosition = vTransform * vVertex
 vWorldPosition = vVertexList.getAt(jj)

 vX = vWorldPosition.x
 if vMaxX < vX then
 vMaxX = vX
 end if

 if vMinX > vX then
 vMinX = vX
 end if

 vY = vWorldPosition.y
 if vMaxY < vY then
 vMaxY = vY
 end if

 if vMinY > vY then
 vMinY = vY
 end if

 vZ = vWorldPosition.z
 if vMaxZ < vZ then
 vMaxZ = vZ
 end if

387ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

 if vMinZ > vZ then
 vMinZ = vZ
 end if
 end repeat
 end repeat

 if vRemove then
 aModel.removeModifier(#meshDeform)
 end if

 vBoundingBox[#minX] = vMinX
 vBoundingBox[#maxX] = vMaxX
 vBoundingBox[#minY] = vMinY
 vBoundingBox[#maxY] = vMaxY
 vBoundingBox[#minZ] = vMinZ
 vBoundingBox[#maxZ] = vMaxZ

 return vBoundingBox
end GetBoundingBox

Performance

Showing interactive 3D content requires many thousands of calculations for every frame. Every new generation of

computers is faster than the previous one, but expectations of what applications can do increases at the same rate.

Animated feature films do not need to be rendered in real-time by a single personal computer. End-users expectations

may be influenced by the quality of pre-rendered footage. Nonetheless, they will always prefer an application that

responds rapidly to their input to one which looks beautiful, but which fails to react. Knowing what shortcuts you can

take to improve the responsiveness of your application can help extend the popularity of your work to users who do

not have the most modern hardware.

Optimizing performance

You can use different ways to reduce the number of 3Dcalculations performed. Some techniques may be applicable to

all your projects. Others may be useful only in specific cases. Here are some examples.

• Each face that appears in a scene requires its own personal treatment. The fewer faces you use, the faster the scene

will display. See “Low-polygon modelling” on page 388 for more details.

• Two scenes that use the same total number of faces can have different performance characteristics depending on

the number of models and shaders that they use. See “Shader count and model count” on page 389 for more details.

• Lighting effects, like specular highlights increase the complexity of the calculations required to render each face. See

“Specular light” on page 389 for more details.

• The 3D playback engine does not know which models in your scene are invisible. It will spend time rendering all

models, even those that are completely hidden by others. If you manually remove undetectable models from the

scene, you can reduce rendering time. See “Culling” on page 389 for more details.

• In an animated scene, the user may not have time to focus on all the visual details. In I static scene, the details are

important. Switching antialiasing on and off at the appropriate times can improve the end user's overall

appreciation of your work. See “Antialiasing” on page 390 for more details.

388ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

• Displaying changes on the screen is very time consuming, and it can be distracting. When initializing your world,

you may want to prevent any changes from being made visible. See “suspendUpdates” on page 394 for more details.

• Collision detection requires intensive use of the computer processor, especially when there are many moving

objects that are close together. Limiting the use of Physics simulations, and deactivating any low-priority Physics

elements can improve performance. See “Physics simulations” on page 395 for more details.

Both JavaScript and Lingo provide multiple ways for achieving the same ends.

• If you have a lengthy operation that needs to be repeated on every frame, it helps to that uses few lines of code is

not necessarily faster than one that uses more precise commands. This is especially true when using repeat loops.

See “CPU-friendly code” on page 396. It also helps to execute as much of your code as possible while the Director

playback engine is not busy doing something else. See “Using frame events wisely” on page 397.

Low-polygon modelling

Each face that appears in a scene requires its own personal treatment. The fewer faces you use, the faster the scene will

display.

Creating realistic low-polygon models is a specialized skill. Careful use of textures and normal mapping can lead to

very impressive effects. Click here for more information.

Reducing the number of faces at runtime

• If you prefer to work with models that have a higher polygon count, you can use two techniques to reduce the

number of polygons that are displayed at run-time. You can use the LOD (Level of Detail) modifier to simplify the

geometry of models when they appear small in the distance. See “Level of Detail (LOD)” on page 51. This gives you

model-by-model control over appearance.

• You can set a targetFrameRate and set useTargetFrameRate to TRUE. The 3D playback will use these settings to

reduce the number of faces used to display all models in an attempt to achieve the specified target frame rate.

Depending on the scene that you wish to display, you may find that you can increase the frame rate by 5 - 20% using

this technique.

useTargetFrameRate merges adjacent faces which have very similar orientations

In certain situations, such as when you use a narrow beam spot light, you may want to increase the polygon count on

a low-polygon model. You can use the SDS (SubDivision Surfaces) modifier to do this. See “Subdivision Surfaces

(SDS)” on page 51.

http://en.wikipedia.org/wiki/Low_poly
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7278.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6fbd.html

389ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Polygons and particle emitters

A single particle emitter can produce many thousands of 2-faced polygons, each of which will be turned towards the

camera to be rendered. If you use particle emitters, you may find that you can significantly increase the frame rate of

your movie by reducing the number of particles produced. Using non-textured particles can also result in significant

improvements in performance.

Shader count and model count

Two scenes that use the same total number of faces can have different performance characteristics depending on the

number of shaders and model that they use.

Specular light

Lighting effects, like specular highlights increase the complexity of the calculations required to render each face.

Culling

The 3D playback engine does not know which models in your scene are invisible. It will spend time rendering all

models, even those that are completely hidden by others. If you manually remove undetectable models from the scene,

you can reduce rendering time.

To see a demonstration of this, download and launch the movie Culling.dir. This creates 100 Box models in the

distance.

Culling.dir creates a wall of 100 boxes in the distance

It then places a Plane model in the foreground, all but hiding the boxes. Two lines 1 pixel high have deliberately been

left visible, so that you will be able to see that the boxes are there.

http://www.adobe.com/support/director/examples/Culling.dir

390ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

A plane model prevents the user from seeing the box models

The 3D rendering engine first renders each of the 100 boxes, and then renders the Plane model. The time taken to

render the boxes is wasted. If you select the Hide Boxes check box, all 100 boxes are removed from the world. Apart

from the two lines of pixels where the boxes have been deliberately left visible, this changes nothing in the final

rendering. However, the frame rate is greatly improved.

Removing the hidden boxes from the world improves the frame rate by 50%

Conclusion: If you know that certain models will not be visible from the current camera viewpoint, manually remove

them from the world to improve performance. You can return them to the world when the camera moves to a position

from where they models will be visible.

Antialiasing

In an animated scene, the user may not have time to focus on all the visual details. In I static scene, the details are

important. Switching antialiasing on and off at the appropriate times can improve the end user’s overall appreciation

of your work.

391ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Using 3D anti-aliasing

In an animated scene, the user may not have time to focus on all the visual details. However, in a static scene, the details

are important. Switching antialiasing on and off at the appropriate times can improve the end user’s overall

appreciation of your work.

Director gives you the ability to use anti-aliasing with 3D cast members in your movies. Anti-aliasing improves the

appearance of graphics by smoothing the lines between shapes or areas of different color so that the lines do not appear

jagged. When you use anti-aliasing with a 3D sprite, the edges of each model in the sprite appear smoother against each

other and against the background. Anti-aliasing of 3D sprites is particularly well-suited for merchandise demos and

other e-commerce applications because its image quality is high and it can be turned on and off, as needed, in real time.

The following scene shows the 3D cast members with anti-aliasing effect turned off.

Anti-aliasing is off

The following scene shows the 3D cast members with anti-aliasing effect turned on.

392ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Anti-aliasing is on

To see a demonstration of this, download and launch the movie Antialiasmode.dir.

Effects of anti-aliasing

An anti-aliased 3D sprite uses more processor power and memory than one that is not anti-aliased, resulting in lower

frame rates. Because of this, it is recommended that you turn off anti-aliasing for 3D sprites while any part of the sprite

is being moved or animated and turn it back on when the animation is complete. Movies that are designed to animate

quickly and games might work better with anti-aliasing turned off. During authoring, movies that use anti-aliasing

continue to draw heavily on the processor, even after the movie is stopped. You might want to turn off anti-aliasing

each time you stop your movie to ensure that the performance of Director is not affected.

Determining whether anti-aliasing is supported

Not all 3D renderers can perform the additional calculations that anti-aliasing requires. If you have a 3D sprite that

you want to anti-alias, check first that the 3D renderer supports anti-aliasing.The renderers that currently support

anti-aliasing include the Director software renderer, and DirectX® 5.2, DirectX 7.0, and DirectX 9.

If the 3D sprite is in channel 1 of the Score, test the antiAliasingSupported property of sprite 1, as shown in the

following example:

 if sprite(1).antiAliasingSupported = TRUE then

Turning on anti-aliasing

If the antiAliasingSupported property is TRUE, turn on anti-aliasing for the 3D sprite by setting the sprite’s

antiAliasingEnabled property to TRUE.

 sprite(1).antiAliasingEnabled = TRUE

For example, if you have a 3D sprite in channel 5 and you want to turn on anti-aliasing for the sprite when it first

appears on the Stage, write a beginSprite script and attach it to the sprite. Your script should contain code as shown:

http://www.adobe.com/support/director/examples/Antialiasmode.dir

393ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

 -- Lingo syntax
 on beginSprite
 -- check whether anti-aliasing is supported by the current 3D renderer
 if sprite(5).antiAliasingSupported = TRUE then
 -- if it is, turn on anti-aliasing for the sprite
 sprite(5).antiAliasingEnabled = TRUE
 end if
 end beginSprite
 // JavaScript syntax
 function beginSprite() {
 // check whether anti-aliasing is supported by the current 3D renderer
 if (sprite(5).antiAliasingSupported) {
 // if it is, turn on anti-aliasing for the sprite
 sprite(5).antiAliasingEnabled = true;
 }
 }

Turning off anti-aliasing

If you plan to animate any part of a 3D sprite, you might want to turn anti-aliasing off temporarily to improve the

animation performance. To do this, set the antiAliasingEnabled property for the sprite to FALSE. Set it back to TRUE

when the animation is complete.

It is a good idea to turn anti-aliasing on and off on separate handlers. For example, you might want to animate a model,

camera, or light while the mouse button is held down and stop the animation when the mouse button is released. In

that case, you would turn off anti-aliasing in a mouseDown handler and turn it back on in a mouseUp handler, as shown

in the following example:

394ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

 -- Lingo syntax
 on mouseDown
 -- user interaction/animation is about to start so turn
 -- anti-aliasing OFF
 sprite(1).antiAliasingEnabled = FALSE

 -- start animation
 end

 on mouseUp
 -- stop animation

 -- the interaction/animation has ended so turn
 -- anti-aliasing ON
 sprite(1).antiAliasingEnabled = TRUE
 end
 // JavaScript syntax
 function mouseDown() {
 // user interaction/animation is about to start so turn
 // anti-aliasing OFF
 sprite(1).antiAliasingEnabled = false;

 //start animation
 }

 function mouseUp() {
 // stop animation

 // the interaction/animation has ended so turn
 // anti-aliasing ON
 sprite(1).antiAliasingEnabled = true;
 }

suspendUpdates

Displaying changes on the screen is very time consuming, and it can be distracting. When initializing your world, you

may want to prevent any changes from being made visible. To do this, set the 3D sprite property

sprite3D.suspendUpdates to TRUE. After you have finished your initialization, set it back to FALSE.

During a lengthy initialization process, you will want to provide feedback to the end-user about what is happening.

One way to do this is to use perform different initialization steps in an on enterFrame() handler, and to update a

progress bar at each step.

To see an example of a (faked) initialization sequence that uses suspendUpdates to freeze the 3D sprite, download

and launch the movie Suspend.dir.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-6876.html
http://www.adobe.com/support/director/examples/Suspend.dir

395ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Using suspendUpdates during an asynchronous initialization process

Physics simulations

Collision detection requires intensive use of the computer processor, especially when there are many moving objects

that are close together. Limiting the use of Physics simulations, and deactivating any low-priority Physics elements can

improve performance.

sleepThreshold

By default, the sleepThreshold of all dynamic rigidBody objects in a 3D world is 0.0. Depending on your settings for

gravity and restitution, certain objects may never reduce their momentum or linearVelocity to zero. Even if you

cannot see them move, these objects will be consuming processor time on each frame, testing to see if they have moved

relative to the objects closest to them.

You may be able to improve performance by raising the default sleepThreshold value for the Physics simulation, and

by customizing the sleepThreshold and sleepMode settings for each individual dynamic rigidBody.

You can also set the isSleeping property of low priority rigidBody objects to TRUE, to free up processor time for other

interactions.

Generating collision callback events

Setting a collision callback handler and enabling collision callbacks requires two lines of code. The result may lead to

the creation of up to 5 ContactReport objects for every moving rigidBody on every frame. You may find that many of

the collision callbacks that are generated are unnecessary. See Suspend.dir for an example treatment of this issue.

Proxy geometry

The simpler the proxy geometry that you use for rigidBodies and for terrains, the faster the Physics simulation can

process them. In some scenes, you may have many complex objects, but not all of them will be the focus of the user's

attention all the time. You may find that you can improve performance by using low-detail proxy objects for most parts

of the scene.

When the user's attention turns to a particular object, you can remove the low-detail proxy and replace it with a high-

detail proxy for the same model.

http://www.adobe.com/support/director/examples/Suspend.dir

396ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Terrains

Where possible, use several small terrain objects, placed side by side. Using a single large terrain can lead to

performance issues. For your own projects, you may wish to find the optimal balance between multiple terrain objects,

the terrain dimensions and the polygon count for each individual terrain.

Ray casting

Using rayCastAll() and rayCastClosest() are both significantly faster than the native 3D ray-casting methods.

However, even with the simplified geometry used by rigidBody proxies, ray casting can be an expensive operation if

the scene is full of rigidBody objects. Unlike the native 3D ray-casting methods, the Dynamiks xtra does not allow you

to limit the number of objects that the ray will consider, nor does it allow you to indicate a maximum distance at which

to stop searching.

If you are sending multiple ray casts on every frame into a crowded scene, you may like to check whether this is

affecting the rate of playback. If so, you may wish to explore alternative techniques. Here are a couple of examples.

• Create a parallel scene with 3D models with very simple geometry and remove it from the world. Use the native

member3D.modelsUnderRay() on a subset of these simple models.

• Use a path-finding algorithm, such as A* (see “Finding a path” on page 229) to find a pre-determined path through

a maze of obstacles.

CPU-friendly code

3D operations may not be the only bottleneck in your project. You may unwittingly be creating scripts that use

inefficient techniques.

Both JavaScript and Lingo provide multiple ways for achieving the same ends. A script that uses few lines of code is

not necessarily faster than one that uses more precise commands. This is especially true when using repeat loops.

Placing timer points in your scripts

In any complex process, there may be certain operations that take longer than others. The most likely places to improve

performance are in those operations that take the longest. To determine where these are, you can place timer points in

your script.

To test this concept, download the movie Suspend.dir. At the end of the on beginSprite() handler in the

SuspendUpdates Demo behavior, you will find three lines commented out. Uncomment these lines and launch the

movie. Watch the output in the Message window.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-798a.html
http://www.adobe.com/support/director/examples/Suspend.dir

397ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Using a debug timer to indicate the elapsed time at the beginning of each operation

You can use a similar technique in your own projects to identify the areas where it would be useful to try to save time.

Comparing potential solutions

If you are aware that there is more than one way to achieve the same goal, it is worthwhile testing which alternative is

the most efficient. If you download the movie Suspend.dir, you can find a Movie Script named Test. This is designed

to compare two different approaches and print out information in the Message window about which one is faster.

The test() handler is currently written to compare these two operations:

• x = aList.getAt(aList.count)

• x = aList.getLast()

You can test this by typing the following command in the Message window.

test(1000000)

This command will run each of the two lines of code above one million times on a list with one million items. Here is

a typical result:

test(1000000)
 -- 195 #lastItem
 -- 104 #lastItem

The test shows that aList.getLast() is almost twice as fast as the alternative. This case is rather trivial; it tells you

how to shave fractions of a nanosecond off an operation on a list. However, you can edit the script to test cases that are

of importance for your own projects.

Using frame events wisely

If you have a lengthy operation that needs to be repeated on every frame, it helps to execute this while the Director

playback engine is not busy doing something else.

http://www.adobe.com/support/director/examples/Suspend.dir

398ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

Every frame, Director generates a series of events that are sent to all sprites and to the first Movie Script that contains

a handler for the event.

• #enterFrame: sent after the image of the frame has been displayed on the screen. All sprites and 3D nodes will

report their new positions accurately.

• #exitFrame: sent while the current frame is still on the screen, after the Director has registered the new position

of the mouse, but before any adjustments have been made to the position of sprites or 3D nodes

• #stepFrame: sent only to scripts and script instances placed on the actorList. See “actorList and #stepFrame events”

on page 426.

• #prepareFrame: sent while the current frame is still on the screen but before modifying the positions of sprites and

3D nodes in preparation for displaying the image of the next frame.

Immediately after the #prepareFrame event, Director plays sounds, updates the position of 3D nodes, draws

sprites, and performs any transitions or palette effects. When this is complete #enterFrame is then sent again.

Between the #prepareFrame and the following #enterFrame event, the Director playback engine is calculating the

value of each pixel to display on the screen. Any code that executes during this period increases the time it takes to

display the next screen.

If the movie is playing at 50 frames per second, each frame will be visible on the screen for 20 milliseconds (= 1000 ms

/ 50 frames per second). The Director playback engine will aim to trigger a new #exitFrame event 20 milliseconds

after the previous one.

Between #enterFrame and #exitFrame, the Director playback engine is “idle”. It has time to wait until the next frame

is ready to be drawn. During this time, the playback engine can process a large quantity of code without slowing down

the process of redrawing the screen. It is in the period between #enterFrame and #exitFrame that many other events

are generated. These include:

• #mouseEnter, #mouseWithin, #mouseDown, #mouseUp, #mouseLeave, #mouseUpOutside

• #keyDown, #keyUp

• Callbacks from timeOut objects

• Callbacks from 3D #timeMS events

enterFrame

If performance is critical to your project, place any lengthy code that needs to be executed on every frame in an on

enterFrame Lingo handler. This is especially true if the code involves updating the appearance or position of sprites

on the screen.

However, an on enterFrame() handler is not good location for code that deals with moving an item in

synchronization with the mouse. The lag between the moment the operating system updates the position of the mouse

pointer and the moment when Director updates the Stage is most obvious if the Stage updates are made in an on

enterFrame() handler.

exitFrame

The #exitFrame event is sent just before the process for calculating the new Stage image starts. Any code executed as

the result of an #exitFrame event will delay the update process, in the same way that looking for you keys just before

you leave the house delays your departure. Limit your use of your on exitFrame() handlers to navigational calls to

_movie.go() or _movie.play().

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f42.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7eae.html

399ADOBE DIRECTOR BASICS

3D: Controlling action

Last updated 3/24/2014

stepFrame and prepareFrame

If you do not make any changes to the sprites on the Stage, you may see a very slight difference in performance if you

use #stepFrame or #enterFrame instead of #enterFrame. The difference may be so small that it is difficult to detect

over the natural variations in playback speed.

However, if you change the position or appearance of any sprites in an on stepFrame() or on prepareFrame()

handler, then the effect on performance can be even worse than using on exitFrame().

Nonetheless, an on stepFrame() or on prepareFrame() handler is a good location for code which synchronizes

the movement of an item with the mouse pointer. Director asks the operating system for the current position of the

mouse immediately before sending out the #stepFrame event, so the lag between the position of the mouse and the

position of a synchronized sprite will be least if the position of the sprite is updated in an on stepFrame() or on

prepareFrame() handler.

400

Last updated 3/24/2014

Chapter 5: Audio mixers and sound objects

The Audio Mixer Inspector window provides a visual interface for managing the Mixer members in your movies. The

Audio Mixer Inspector allows you to work with three different types of object:

• A mixer is a container that mixes sounds and applies filters to the resulting mix to create a variety of effects. It

provides an efficient way to play back multiple sounds simultaneously. See “Audio mixers” on page 400.

• A sound object defines a sound source. This can be a cast member, a file on the end-user's hard disk, or a sound

streaming over a network connection. It can also be the sound track of an MP4 video file. Each individual sound

object can have its own settings and filters. See “Sound objects” on page 402.

• A filter is a plug-in audio editor that applies an effect such as echo or distortion to audio samples as they are played

back.

Audio mixers and sound objects can use a panMatrix to control the volume of playback on up to six speaker channels.

You can use mixers and sound objects to manage output for multiple sound playback systems, including mono, stereo,

2.1, 3.1, 4.1, and 5.1 sound.

This section describes how to work with the Audio Mixer Inspector. It also gives a glimpse at other features of audio

features that are only accessible through Lingo or JavaScript syntax.

Audio mixers

A mixer is container that mixes the sound objects that it contains and plays the resulting output. Because multiple

audio sources are merged into a single audio source, mixers save resources by reducing the amount of data transferred

to the sound card.

You can use a mixer to mix audio sources with the same or different sampling rates, bit depth, or number of channels.

The audio sources for a mixer can be from different musical instruments, vocalists, members of an orchestra,

announcers, journalists, crowd noises, and so on. You can apply audio filters to the output of a mixer to create a range

of effects.

You can find two types of mixer in a Director movie.

• Mixers can be stored as a cast member with the type #Mixer. You can use the Audio Mixer Inspector to modify

Mixer members. See “The Audio Mixer Inspector” on page 405 for details. When you save your movie, the current

state of all Mixer members is saved.

• Every #mp4 member has a mixer property, and so do sprites which display #mp4 members. You cannot modify the

mixer of an #mp4 member, but you can use Lingo and JavaScript syntax to make run-time changes to the mixer of

an #mp4 sprite. Run-time changes made to #mp4 sprites are not saved when the movie is saved. In Director 11.5.8,

the Audio Mixer Inspector can not be used to display the properties of an #mp4 mixer. See “Mixing MP4 movie

sound with other sounds” on page 419 for more details.

Creating a new mixer

You can create a new Mixer member in three different ways:

• Select the menu item Insert > Media Element > Mixer

• Use the [+] button in the Audio Mixer Inspector. See “The Audio Mixer Inspector” on page 405 for details

401ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

• Use the new() or _movie.newMember() methods with the symbol #Mixer

Mixer methods

You can use all the standard cast member methods on a Mixer member. See the method summary table at Member.

Mixer members also have 13 type-specific methods, as listed below.

Use the following methods to manage the sound objects that are played back by a mixer:

• mixer.createSoundObject()

• mixer.deleteSoundObject()

• mixer.getSoundObject()

• mixer.getSoundObjectList()

Use the following methods to control playback of the sound mix:

• mixer.mute()

• mixer.play()

• mixer.pause()

• mixer.stop()

• mixer.unmute()

Use the following methods to save the mixed sound to a file on a local drive:

• mixer.save()

• mixer.startSave()

• mixer.stopSave()

Use the following method to revert the mixer to its last saved state:

• mixer.reset()

Mixer properties

You can use all the standard cast member properties with a Mixer member. See the property summary table at

Member. Mixer members also have 15 type-specific methods, as listed below.

The following properties are read-only:

• mixer.channel

• mixer.elapsedTime

• mixer.filterList

• mixer.isSaving

• mixer.soundObjectList

• mixer.status

 In Director 11.5.8, when you attempt to set one of the above properties, a script error occurs.

Use the following properties to arrange the output sound spatially on systems with multiple speakers.

• mixer.channelCount

• mixer.panMatrix

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f39.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSc3ff6d0ea77859461172e0811d64c1a1b3-7f96.html&ei=umP7TabBF8W8rAeGpsDBDw&usg=AFQjCNHzQdaOSP76BWFJhzq-4cnnn1DbZQ
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSF44FC624-023F-4fad-A9CB-7E95BCF4D70C.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS2A514964-86E5-4e60-AA2D-80DCA58AEE2F.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS176C9631-A475-4e4a-8A79-F1CB03EB792F.html&ei=aGT7TfuLN5HxrQeu8ITyDw&usg=AFQjCNHdW2xNPBD2rXNmqhHaNnMn_S7o5w
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS15C14B1C-34B0-4514-8B23-3BC819CF07DD.html&ei=iWT7TYz1FcbnrAeQwMTCDw&usg=AFQjCNHrimTaWShmIyNDw2Wa8f6V_ONGZw
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS6A91E8F3-C681-4658-83BB-720959E1BCE2.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS2CF5A18F-05CC-4bb3-8EAC-E496D85C4029.html&ei=xWT7TeqfG4arrAeysLH0Dw&usg=AFQjCNFKLPR42fA69YrGYfAcgPS6LPtAkg
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSDFDD0942-EB6E-48ed-AC7E-96BD23411AED.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS4B5F8C25-B0C0-4072-8806-B9F3B80CFF11.html&ei=ImX7TayAIIzSrQe2tPDADw&usg=AFQjCNFPlyOkCd1ESUvlmDKIHSBz1sWfbw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSD3BE6C18-9185-4f89-BA6D-9003F00B0C75.html&ei=P2X7TZWwB8_PrQeilu3mDw&usg=AFQjCNFQ6YhlyeZU1pLEZchgm2y75VGNEQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSEC46D273-23AA-452e-9974-33EC4DFE443C.html&ei=ZWX7TZ-ZA4rPrQfN472-Dw&usg=AFQjCNF-u-zQMJ-Uwho4Toz_l2w5o_DYnA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSC38BAFF5-D359-49ae-83EA-CB220789B4C6.html&ei=hWX7TamDL83qrQekzPzvDw&usg=AFQjCNEacrRhV9vPCpvbFc0PmMM9JlqxjQ
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS3CA6E331-B7C5-4dbf-A0AB-88334F25DFF9.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSE005BE5D-73E9-499d-8136-8B3E45177F64.html&ei=y2X7Ta_lFs2trAexy6jyDw&usg=AFQjCNHvFr3tuCmis9Tmr26mLfkQq4Sz-A
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f96.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS769C9F3B-7EF9-4eed-A5E7-7072CB8C3C5E.html&ei=o-T-TYi5DMfwrQfWsPXSDw&usg=AFQjCNHsQ9JbLNSv6s4jjyE9nvV4YTx3oQ
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSB634E83D-C11F-4ed9-B0EE-4C89EAB61A58.html
http://www.google.co.in/url?sa=t&source=web&cd=1&sqi=2&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS56084614-DACE-41fd-AF2C-A7918CF3B618.html&ei=LOX-TcHIA8LprAf4zo3iBQ&usg=AFQjCNEd0ubvVhQGL13fsX_sD8SwGdg3gA
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS273BA1B5-CEE0-4cff-926E-1D899AD35472.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS58AD452E-BFEE-4cfe-8B1E-B5F36BA83D84.html&ei=bOX-Tc2RM4H3rQf456nzDw&usg=AFQjCNEXBlOwmFPeSoAU3cFNx7JaSycK8w
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS1A88AD3B-E795-4c4a-A0A0-7EDC74E174D2.html&ei=h-X-TbSOEsjnrAfZ0fnIDw&usg=AFQjCNGDYu1u8yScOdDWrEXzUbcMlmc8Hg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSC6423B04-A70B-4e24-819B-72C7C6914B76.html&ei=quX-Te3oOoenrAfsvZ3GDw&usg=AFQjCNH5mwh_T1KlXLRb1kOXej89kAUE8A
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSFFF8EB88-FC61-494d-8AF0-6A35626BAF76.html

402ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

• mixer.toChannels

• mixer.useMatrix

Currently, panMatrix, toChannels and useMatrix share a single entry in the Scripting Dictionary. In the

alphabetical Scripting Dictionary, these will need to be divided into separate entries.

The following properties can only be set while the mixer has a status of #stopped. Attempts to change the value of

these properties will fail silently if the mixer is not stopped.

• mixer.bufferSize

• mixer.numBuffersToPreload

• mixer.sampleRate

• mixer.bitDepth

You can set the volume of a mixer at any time using mixer.volume.

The Audio Mixer Inspector does not give you access to the following properties; You need to use Lingo or JavaScript

syntax with these properties:

Read-write properties:

• mixer.panMatrix

• mixer.useMatrix

Read-only properties:

• mixer.channel

• mixer.elapsedTime

• mixer.isSaving

• mixer.status

Sound objects

A sound object defines the audio data that is added to a mixer. Sound objects contain the actual sound data that is to

be played. Sound data may come from a variety of sources:

• An audio file (either stored locally or retrieved over a network connection)

• An audio cast member

• A streaming cast member

• A byteArray

You can add audio filters to a sound object to create a range of effects. These effects are applied before the sound data

is transferred to the mixer for playback. Additional audio filters can be added to the mixer.

A sound object cannot exist independently of a mixer. If you delete a sound object from its parent mixer, any variables

that refer to the sound object will be set to VOID. You can, however, transfer a sound object from one mixer to another.

When you save your movie, the current settings for all the sound objects will be saved in their parent mixers.

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS769C9F3B-7EF9-4eed-A5E7-7072CB8C3C5E.html&ei=lev-TfebKsXYrQfO0vjvDw&usg=AFQjCNHsQ9JbLNSv6s4jjyE9nvV4YTx3oQ
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSFFF8EB88-FC61-494d-8AF0-6A35626BAF76.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS10484C7F-15D4-4434-969B-241EB15CC790.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSEC093A8E-AD5A-4f2f-B321-236BEE15DB2E.html&ei=4Oz-TdmLL8rRrQeXmOTCDw&usg=AFQjCNGwkuSldpGH8W81ykh9Jd9wqswDFQ
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSDE0177FD-62DF-4ca3-BE1D-C8B06BCAA7C6.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSA745EB51-E0E2-4cf8-B727-F4F1B7D49C24.html&ei=Hu3-Tf-vOYuurAfsn5m-Dw&usg=AFQjCNHH4ApfsfhmUJEjPCWUtw04kJDWyA
http://www.google.co.in/url?sa=t&source=web&cd=2&ved=0CB4QFjAB&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS50264B37-32CA-4f3e-9B88-32DC0B0385D4.html&ei=Oe3-TerzBsLorAfnzdnKDw&usg=AFQjCNHTR_IBKblmSe1-GjN84LGTiOkMqg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSFFF8EB88-FC61-494d-8AF0-6A35626BAF76.html&ei=nu3-TfnOL8ysrAeR4YTcDg&usg=AFQjCNGTq0HeKJj9bHr6IteP8AVIdoHt2A
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSFFF8EB88-FC61-494d-8AF0-6A35626BAF76.html&ei=uu3-Tfb5PIntrQfVxt3iDw&v6u=http%3A%2F%2Fdualstack.ipv6-exp.l.google.com%2Fgen_204%3Fip%3D61.246.216.100%26ts%3D1308552635220900%26auth%3Dnmoduobqpjhovzso24groves5hr5363q%26rndm%3D0.8292825139892226&v6s=2&v6t=1891&usg=AFQjCNGTq0HeKJj9bHr6IteP8AVIdoHt2A
http://www.google.co.in/url?sa=t&source=web&cd=2&ved=0CB4QFjAB&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSA33EC9A8-A3E6-4ca4-940D-03DC05BF5652.html&ei=uu3-Tfb5PIntrQfVxt3iDw&usg=AFQjCNEvBsOWAaGiBXj8eW7f24d5BS6hKA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSB634E83D-C11F-4ed9-B0EE-4C89EAB61A58.html&ei=QO7-TfDpA8zorQeVrfXaDw&usg=AFQjCNHTb26iaGYrWYx7E5JGlz-t-GKgZw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS273BA1B5-CEE0-4cff-926E-1D899AD35472.html&ei=Wu7-TYveJcOyrAeAlIz3Dw&usg=AFQjCNGuLGLLee1NAyBt5M3cQF8CsYR8PQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS1A88AD3B-E795-4c4a-A0A0-7EDC74E174D2.html&ei=c-7-TcTHC8HRrQf457zXDw&usg=AFQjCNGDYu1u8yScOdDWrEXzUbcMlmc8Hg

403ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Creating a new sound object

You can create a new sound object in two different ways:

• Use the [+] button in the Audio Mixer Inspector. See “Adding a sound object to a mixer” on page 407 for details

• Use the mixer.createSoundObject() method

Sound object methods

Use the following methods to modify the sound object:

• soundObject.moveTo(): moves the sound object to a different mixer

• soundObject.replaceMember(): changes the cast member audio source

Note: In Director 11.5.8, soundObject.replaceMember() fails unless a second parameter with the value

[#loopCount: 0] is used. This will lead to the sound repeating continuously. There are also issues with setting

soundObject.loopCount = 1. If you want to change the sound member without looping the sound forever, the simplest

workaround is to use a handler like the one below.

on ReplaceSoundObjectMember(aSoundObject, aMember)
 vName = aSoundObject.name
 vMixer = aSoundObject.mixer
 vFilterList = aSoundObject.filterList
 vMixer.deleteSoundObject(aSoundObject)
 vSoundObject = vMixer.createSoundObject(vName, aMember)
 vCount = vFilterList.count
 repeat with ii = 1 to vCount
 vFilter = vFilterList[ii]
 vSoundObject.filterList.append(vFilter)
 end repeat
 return vSoundObject
end ReplaceSoundObjectMember

Note that this code will replace any customized values for the properties of the sound object with default values. You may

need to use a similar technique to the one used for audio filters to transfer the custom property values from the old sound

object to the new one.

Use the following methods to control playback of a sound object:

• soundObject.breakLoop()

• soundObject.mute()

• soundObject.pause()

• soundObject.play()

• soundObject.seek()

• soundObject.stop()

• soundObject.unmute()

Use the following methods to save the sound object to a file on a local drive:

• soundObject.save()

• soundObject.startSave()

• soundObject.stopSave()

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSF44FC624-023F-4fad-A9CB-7E95BCF4D70C.html&ei=2u7-TbzsMMmrrAeR_tnkDw&usg=AFQjCNFyetlY3q_XUrKFdqdgM4TZMcQ-vQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS1ADDF6AA-1AB7-4f3e-B6A6-5369E1F6DE1A.html&ei=AO_-TcaOG4LirAeOhYHaDw&usg=AFQjCNGxNJA6UC-WtkDu9_Bw05zF32a0wQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS56B005BC-C659-4ae7-B062-0990A998FE7A.html&ei=Gu_-TbmoEMLmrAfD4M3oCQ&usg=AFQjCNGVknxkjz_E_WM1lG42xxOi0KNM9g
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS6BED1D05-818C-433e-AA25-CF0DF33E8D56.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSC483D301-B71F-44ea-ABF9-A02CEABAD2C2.html&ei=BiH_TffqEseGrAeVrN3zDw&usg=AFQjCNHEZbqxV6JBt6HA-3YL3Iz6TeZhpg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSC5D12D3D-84B8-4ba3-B4F6-66047E4E11A5.html&ei=HiH_TYiyJYyzrAeg-rjZDw&usg=AFQjCNEPL29vPriYuaO-YHLm7vav46DvoQ
http://www.google.co.in/url?sa=t&source=web&cd=2&ved=0CCEQFjAB&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS9788C32C-C172-4f75-A3A8-A61BE9DA7886.html&ei=PiH_TZ2cOc3irAfqtLW9Dw&usg=AFQjCNFVySIpMqu8BD77F3jhpJlqyNzJVA
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS85FC8248-FC85-4a63-94CF-B230EEE76C86.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS128128E0-9AAF-4640-8C3C-70DEC88484FA.html&ei=jyH_TZrxOoX3rQf9l7TtDw&usg=AFQjCNEe7XMHA1vnA0cJeNFdz6YOOFBcvw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSDCD12A34-A915-478e-A833-7394325A32E9.html&ei=riH_TfzuHs3irAfqtLW9Dw&usg=AFQjCNFfZzmX6_MJWdKBN5lNNfbqtjSJ-A
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSAD05953D-B679-46f8-9615-FB4688D840AA.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSAD05953D-B679-46f8-9615-FB4688D840AA.html&ei=ASL_Td6CNs3LrQf7_M3hDw&usg=AFQjCNGWS0SaE6MsbHFFipYLOSmNFSm45Q
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS75323FEE-794A-4d1c-AEA5-F309AE5CF9A2.html&ei=GyL_Tf7GN4bVrQf8r9nMDA&usg=AFQjCNGO2iGBZNyTxTE8EIvxxgNfPIPBiA

404ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Use the following methods to work with callbacks:

• soundObject.registerByteArrayCallback()

• soundObject.registerCuePointCallback()

• soundObject.unregisterByteArrayCallback()

• soundObject.unregisterCuePointCallback()

• soundObject.unregisterEndOfSpoolCallback()

Sound object properties

The following properties are read-only. In Director 11.5.8, attempting to set one of these properties may provoke a

script error.

• soundObject.bitDepth

• soundObject.channelCount

• soundObject.connectionStatus

• soundObject.currentTime (see soundObject.seek())

• soundObject.duration

• soundObject.elapsedTime

• soundObject.isSaving

• soundObject.filterList

• soundObject.loopsRemaining

• soundObject.member

• soundObject.mixer

• soundObject.mostRecentCuePoint

• soundObject.percentStreamed

• soundObject.sampleCount

• soundObject.sampleRate

• soundObject.status

You can set the following properties of a sound object.

• soundObject.name

• soundObject.preloadTime

Use the following properties to set how the sound source is played back:

• soundObject.playRate

• soundObject.startTime

• soundObject.endTime

• soundObject.loopCount

• soundObject.loopStartTime

• soundObject.loopEndTime

• soundObject.volume

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSAC788789-A3A0-4993-BE09-C4E33D958427.html&ei=NyL_TYDtDsHHrQf_77noDw&usg=AFQjCNE8vSOrko2fEbHxA2JZ96gR5NFOuw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS47D58745-5872-4dfb-BDFC-194C46BEBF52.html&ei=VSL_TbSWOYKvrAfFu83mDw&usg=AFQjCNE707egHkJOJqoOpD0IoedDgUxLtw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS69BDAA53-60E5-4f06-B0DE-B3C79FEA18C4.html&ei=cyL_TcrqCIfqrQfzwInUDw&usg=AFQjCNERhj-1VmhAI9xDmSY0QBlWk6R3mg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS0146AD79-682A-434c-9F37-95E26A26E105.html&ei=hyL_TbWBHIfprQeChsXbDw&usg=AFQjCNHIh-drbTGRAbb2xf2wN8DT4ekaBA
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc1b83f70210cd10172e03be211fd0c354a9-7fff.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSF5ADEBD9-1359-4d24-8A76-DF050AD4D9C0.html&ei=eSf_TY3-L83prQfV1_XTDw&usg=AFQjCNHd6BEvzueNwhFzsMvM88iVPiBF7w
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS767F3462-B72A-40a1-A803-4F9CC3B0FD3B.html&ei=nCf_TcPeGoWJrAeZwK29Dw&usg=AFQjCNEg2GVav4dr2YWAE69OpVeJD-hVCg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS289D6E3C-8076-4a47-BD1B-EC57F088019E.html&ei=dkT_TcyPB8SIrAewtrjbDw&usg=AFQjCNEZBeueS08sKypcSNBwszHL4MNg0A
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSB8A10580-F936-4ee9-98F9-68E38790724F.html&ei=nET_TZ_SCJGzrAf1rvjzDw&usg=AFQjCNFgq0q_PqLSnRnloB9RXP6QudMs6g
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS85FC8248-FC85-4a63-94CF-B230EEE76C86.html&ei=tET_TZLQOYO3rAenhfnPDw&usg=AFQjCNFfS6NuxHmGNdY5b_62_icIBp6g_w
http://www.google.co.in/url?sa=t&source=web&cd=4&sqi=2&ved=0CC8QFjAD&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSc3ff6d0ea77859461172e0811d64c1a1b3-7d2b.html&ei=ckX_Ta_ZNIPOrQeZs4HMDw&usg=AFQjCNHfAiXodjREyzHOLRi0MjsdRdq7oQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSCF41C4A6-C422-46a2-BFAE-8770F1E4C6F9.html&ei=i0X_TdDGKsfqrAfI8tXEDw&usg=AFQjCNHM19Sa_pmH3EKlw2x1XzqE0sn65g
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSA272447E-6841-41aa-9656-AA8722ED0E7B.html&ei=3UX_TfOhKIjZrQfqsIHdDw&usg=AFQjCNEoDLflsS_xLojpZ8-poFVEt2NJ0A
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS60CDD20C-61DD-4f1b-B7F9-EC0421CC4DD0.html&ei=9kX_TbejAYWyrAfn1vDdDw&usg=AFQjCNGJ-l6ghmEqzoZ4zsKsGqnJVwIZ4A
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS8B8365A9-8505-423f-B9A3-F6859896EFC1.html&ei=DEb_TYXdMoHTrQfx67HUDw&usg=AFQjCNHewBNbCq7Q11VS5_QPWyjCYBAGnQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS26F87806-FB01-475b-A43C-403FBED172EF.html&ei=KUb_TY-6EMPtrAf6taj2Cg&usg=AFQjCNEass2maObi15xeaUqX6qQ1qnNMRQ
http://www.google.co.in/url?sa=t&source=web&cd=2&ved=0CCAQFjAB&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSFB67F015-2342-4f13-A0C9-26690F64B099.html&ei=S0b_TcGOA8XirAfx04gE&usg=AFQjCNFpCyaZ9MAWFBRvpTlILRS_NKkqCw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS06AEC6C8-0599-479b-9F4F-5F1FBDDCC69B.html&ei=YUb_TfKbL9GGrAeTy9X2Aw&usg=AFQjCNEtIAzrALu_PyAf3zW7hqH_ZOf_VA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS577851E5-64C8-4726-A262-D7A969597DD2.html&ei=sEb_TYKbJcrjrAeRmcTLDw&usg=AFQjCNEXhLDLz1yaNcfJP70VUDBkwTUYug
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS2BE63FD0-2F1C-46a3-B460-62D2B5D31CD2.html&ei=zEb_Tfz8OI_SrQfmz8zqDw&usg=AFQjCNGwBoJhvoXzdnNvu6OKVbsNFPCgYA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSA806EFF5-9882-4238-9B18-E5A99E3320D8.html&ei=6Eb_TdbZDcrjrAeRmcTLDw&usg=AFQjCNFJvlIXJdFtGVgKGvoavUm-m1HiEQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS16C08725-002D-4838-B7B5-DC6774F816BB.html&ei=B0f_TenTCcXUrQejkZnzDw&usg=AFQjCNGeeehQexDJNxW22621yY3NDkdfsw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS79D794FA-ECD0-4b19-99F6-60CD31A7A4DF.html&ei=QEf_TY_uD4PprQflsfniDw&usg=AFQjCNGjLEIGS3OOVbgv5TfyZOLx73K2kQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSF44FC624-023F-4fad-A9CB-7E95BCF4D70C.html&ei=XEf_TbrlJoTKrAfd55HODw&usg=AFQjCNFyetlY3q_XUrKFdqdgM4TZMcQ-vQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSC3BD528A-70FE-47cb-BDF0-7F49B63B8521.html&ei=pUf_TYnQBcjVrQfHsbm-Dw&usg=AFQjCNF8MiYAJU5FYAMqxi7LHitx_n4zJw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS675081E7-4228-4823-8D14-C2DF56765FE9.html&ei=90f_TcruI4XprQePwvz7Aw&usg=AFQjCNEtoIUJE2iJ5NOggx0PigmZ6TV-aQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS665D458A-BF0F-4998-A01F-030075ACA092.html&ei=D0j_TfLdHovPrQetoLEk&usg=AFQjCNF4MdAlmZotDiRAzzOrGbMk0FttXw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSF50B493E-6866-460c-AF97-6182C39DE4E5.html&ei=LEj_TYS9GserrAflraXBDw&usg=AFQjCNHTb83Z7HjxW7t6qRmE4Xe_eYVpKg
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WS231A7CFA-5D6F-471f-A3A2-F74F2ACFAE52.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS16E0D7A1-45CC-4cd0-B39A-6C4AE2FA6FDB.html&ei=b0j_TeDaIo3LrQeF7tXlDw&usg=AFQjCNGcKQ5VuQN6pINt4yaB1N0wQqawgw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSE5B5B3B2-5082-4f7f-8F79-51FE15C141F3.html&ei=kUj_Td_jBsbRrQeo87jBDw&usg=AFQjCNHADgB29MamWf6jOPKCZ7UUsfZWxg

405ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Use the following properties to set how the different channels in the sound object are played through the available

speakers:

• soundObject.panMatrix

• soundObject.toChannels

• soundObject.useMatrix

The Audio Mixer Inspector

You can open the Audio Mixer Inspector in the following ways:

• Select the menu item Window > Audio Mixer.

• Press Ctrl+Shift+X (Microsoft® Windows XP, Windows Vista, or Windows 7) or Command-Shift-X (Mac OS X).

• Double-click on a Mixer member in the Cast window.

• Select a Mixer member in the Cast window and press the Return key.

If you use either of the last two methods when the Audio Mixer Inspector window is already open, the entry associated

with the Mixer member will be selected in the Mixer Browser pane.

The Audio Mixer Inspector window showing the hierarchy of objects inside a mixer

The Audio Mixer Inspector is divided into two panes. The Mixer Browser in the left pane lets you select one of the

various Mixer members in your movie, and browse its hierarchy of sound objects and filters. The Mixer Browser is

where you select the object that you wish to inspect.

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS0AD50D91-6FA4-4ace-9E4C-2C4C3FDABA67.html&ei=0Uj_TYalHdHNrQeCu8WsBA&usg=AFQjCNHzZMbeQTkq_so5FrkFgwdeEs84gA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS0AD50D91-6FA4-4ace-9E4C-2C4C3FDABA67.html&ei=60j_TempII3LrQeF7tXlDw&usg=AFQjCNHzZMbeQTkq_so5FrkFgwdeEs84gA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS0AD50D91-6FA4-4ace-9E4C-2C4C3FDABA67.html&ei=Dkn_TeLuGs7prQe519zNDw&usg=AFQjCNHzZMbeQTkq_so5FrkFgwdeEs84gA

406ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

In the Properties pane on the right, you can view most of the properties of the selected object. You can set the values

of any read-write properties that are displayed. The Export To File button will be disabled if the currently selected

object is not a mixer or a sound object, or if the selected object or its parent object is currently playing.

Floating or document window

By default, the Audio mixer Inspector will be set to float above other windows. If you prefer to view other document

windows in front of it, click on the contextual menu button at the top right corner of the window, and select the Unfloat

Panel Group option.

Making the Audio Mixer Inspector behave like a document window

Creating a new mixer

If you currently have no Mixer members in your movie, both panes will be blank.

To create a new Mixer member, click the [+] button, and select New Mixer. A new Mixer member will be created and

added to the active Cast library. The new mixer will be listed in the Mixer Browser area along with its cast member

number.

Creating a new mixer in the Audio Mixer Inspector

Naming a mixer

The new Mixer member will have an empty name. It will not be selected automatically. To name the mixer, select it in

the left Pane, and then enter a name in the text box in the right pane. This will automatically set the name for the new

member. Alternatively, you can name the member itself in the Cast window.

407ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Naming a mixer

Mixer properties

With a mixer selected, the right pane will allow you to set the following properties:

• mixer.name

• mixer.bufferSize

• mixer.numBuffersToPreload

• mixer.volume

• mixer.toChannels

• mixer.sampleRate

• mixer.bitDepth

• mixer.channelCount

Note: In Director 11.5.8, you will not be able to set the values for mixer.panMatrix or mixer.useMatrix using the Audio

Mixer Inspector. You will need to use Lingo or JavaScript syntax to set these properties.

You will also be able to play, pause, stop and mute the mixer.

Removing a mixer

You cannot remove a mixer from within the Audio Mixer Inspector. To remove a Mixer member, you need to select

the Mixer member in the Cast window and select the menu item Edit > Clear Cast Members, or simply press the Delete

or Backspace key.

Adding a sound object to a mixer

You can add audio cast members as sound objects to a mixer. If the current movie does not contain any audio cast

members, import one or more audio cast members by selecting the menu item File > Import.

You can use one of the following ways to add an audio cast member as a sound object to a mixer:

• Select a mixer in the Mixer Browser area and click [+].

• From the Add Sound submenu, select the audio cast member that you want to add as a sound object.

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS67BDC873-D4CE-4520-AE10-D4A78B501B86.html&ei=AEr_TauXO4nxrQfs-sXFCA&usg=AFQjCNGPu6hawYv9Z_rqcknJYRSDl_jtTw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS10484C7F-15D4-4434-969B-241EB15CC790.html&ei=F0r_TduyM8nrrQeAy833Dw&usg=AFQjCNGFNyIMqv-XgnpT9a6etVEmss5wCQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSEC093A8E-AD5A-4f2f-B321-236BEE15DB2E.html&ei=Lkr_TcmTJ8n5rAe64oTCDw&usg=AFQjCNGwkuSldpGH8W81ykh9Jd9wqswDFQ
http://www.google.co.in/url?sa=t&source=web&cd=2&ved=0CB4QFjAB&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS50264B37-32CA-4f3e-9B88-32DC0B0385D4.html&ei=SEr_Tc2TBI7yrQeFnPXFBg&usg=AFQjCNHTR_IBKblmSe1-GjN84LGTiOkMqg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSFFF8EB88-FC61-494d-8AF0-6A35626BAF76.html&ei=aEr_TZzYNYbNrQfqw8HXDw&usg=AFQjCNGTq0HeKJj9bHr6IteP8AVIdoHt2A
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSDE0177FD-62DF-4ca3-BE1D-C8B06BCAA7C6.html&ei=hkr_TZGNDcrOrQewspnDDw&usg=AFQjCNHbvwRJiePUE4YHVbUQ9le9F9wtOg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSA745EB51-E0E2-4cf8-B727-F4F1B7D49C24.html&ei=oUr_TfvXJ4nJrAfOs8HcDw&usg=AFQjCNHH4ApfsfhmUJEjPCWUtw04kJDWyA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSC6423B04-A70B-4e24-819B-72C7C6914B76.html&ei=ukr_TY2SPMumrAfy0KTmDw&usg=AFQjCNH5mwh_T1KlXLRb1kOXej89kAUE8A
http://www.google.co.in/url?sa=t&source=web&cd=1&sqi=2&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSFFF8EB88-FC61-494d-8AF0-6A35626BAF76.html&ei=6Er_Tey9G4PprQflsfniDw&usg=AFQjCNGTq0HeKJj9bHr6IteP8AVIdoHt2A
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSFFF8EB88-FC61-494d-8AF0-6A35626BAF76.html&ei=Ekv_TYG5GcrXrQe0v6ywBw&usg=AFQjCNGTq0HeKJj9bHr6IteP8AVIdoHt2A

408ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Selecting an audio cast member to use as a sound object using the [+] button

The alternative method is:

1 Select a mixer in the Mixer browser area.

2 Right-click (Windows) or Ctrl-click (Macintosh) anywhere in the left pane.

3 In the contextual menu, click Add Sound, and then click the audio cast member that you want to add as a sound

object.

Selecting an audio cast member to use as a sound object using the Mixer Browser contextual menu

Sound object properties

With a sound object selected, the right pane will allow you to set the following properties:

• soundObject.startTime

• soundObject.endTime

• soundObject.preloadTime

• soundObject.loopCount

• soundObject.loopStartTime

• soundObject.loopEndTime

• soundObject.volume

• soundObject.toChannels

• soundObject.playRate

You can also see the values for the following read-only properties:

• soundObject.member

• soundObject.duration

• soundObject.sampleRate

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS675081E7-4228-4823-8D14-C2DF56765FE9.html&ei=0Ev_Ta-AO4HKrAej48zkDw&usg=AFQjCNEtoIUJE2iJ5NOggx0PigmZ6TV-aQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS665D458A-BF0F-4998-A01F-030075ACA092.html&ei=6Uv_TfL9H47krAe6nfDyDw&usg=AFQjCNF4MdAlmZotDiRAzzOrGbMk0FttXw
http://www.google.co.in/url?sa=t&source=web&cd=2&ved=0CB4QFjAB&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSc3ff6d0ea77859461172e0811d64c1a1b3-7d0c.html&ei=D0z_TZKhF4a4rAeznM3RDw&usg=AFQjCNHJcqmHjtnHU2JcABjT0dzxy0Vb1g
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSF50B493E-6866-460c-AF97-6182C39DE4E5.html&ei=Ikz_TYr4J9HorQeT2andDw&usg=AFQjCNHTb83Z7HjxW7t6qRmE4Xe_eYVpKg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS231A7CFA-5D6F-471f-A3A2-F74F2ACFAE52.html&ei=Q0z_Tey3EMzHrQfLpI3lDw&usg=AFQjCNHEjISxsIv5jzC4sBkNYu137KZqCg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS16E0D7A1-45CC-4cd0-B39A-6C4AE2FA6FDB.html&ei=XUz_Td7rDovJrAfK8pzmDw&usg=AFQjCNGcKQ5VuQN6pINt4yaB1N0wQqawgw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSE5B5B3B2-5082-4f7f-8F79-51FE15C141F3.html&ei=eEz_TeHzEsPirAfh7M33Bg&usg=AFQjCNHADgB29MamWf6jOPKCZ7UUsfZWxg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS0AD50D91-6FA4-4ace-9E4C-2C4C3FDABA67.html&ei=k0z_Tf62KoynrAfi48n0Dw&usg=AFQjCNHzZMbeQTkq_so5FrkFgwdeEs84gA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSC3BD528A-70FE-47cb-BDF0-7F49B63B8521.html&ei=r0z_Tdf7GsbprQfu79DiDw&usg=AFQjCNF8MiYAJU5FYAMqxi7LHitx_n4zJw
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS26F87806-FB01-475b-A43C-403FBED172EF.html&ei=3Ez_TfuSFcPsrQeOquDHDw&usg=AFQjCNEass2maObi15xeaUqX6qQ1qnNMRQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS577851E5-64C8-4726-A262-D7A969597DD2.html&ei=9kz_TbnqCIW8rAe0rryRAQ&usg=AFQjCNEXhLDLz1yaNcfJP70VUDBkwTUYug
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSA806EFF5-9882-4238-9B18-E5A99E3320D8.html&ei=Jk3_TbXkHsPxrQfbhYT3Dw&usg=AFQjCNFJvlIXJdFtGVgKGvoavUm-m1HiEQ

409ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

• soundObject.bitDepth

• soundObject.channelCount

Note: In Director 11.5.8, you will not be able to set the values for soundObject.panMatrix or soundObject.useMatrix

using the Audio Mixer Inspector. You will need to use Lingo or JavaScript syntax to set these properties.

Removing a sound object from a mixer

To remove a sound object from a mixer, you can choose one of the following techniques:

• Select the sound object, click the [-] button, and choose Remove Item from the pop-up menu.

Using the [-] button to remove a sound object from a mixer

• Right-click (Windows) or Ctrl-click (Macintosh) on the sound object. In the contextual menu, select Remove.

Using the contextual menu to remove a sound object from a mixer

• Alternatively, select the sound object, and then press the Delete or Backspace key.

Removing all sound objects

If you want to remove all the sound objects from a given mixer, you can use the following additional methods:

• Select the mixer in the Mixer Browser pane. Click the [-] button, and then select Remove All Sound Objects from

the popup menu.

Using the [-] button to remove all sound objects from a mixer

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSF5ADEBD9-1359-4d24-8A76-DF050AD4D9C0.html&ei=Qk3_TevPFYbVrQf8r9nMDA&usg=AFQjCNHd6BEvzueNwhFzsMvM88iVPiBF7w
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS767F3462-B72A-40a1-A803-4F9CC3B0FD3B.html&ei=XE3_TZX1GMHqrAeWs4XwDw&usg=AFQjCNEg2GVav4dr2YWAE69OpVeJD-hVCg
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS0AD50D91-6FA4-4ace-9E4C-2C4C3FDABA67.html&ei=e03_TbXpK8PQrQf0_ZXYDw&usg=AFQjCNHzZMbeQTkq_so5FrkFgwdeEs84gA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS0AD50D91-6FA4-4ace-9E4C-2C4C3FDABA67.html&ei=e03_TbXpK8PQrQf0_ZXYDw&usg=AFQjCNHzZMbeQTkq_so5FrkFgwdeEs84gA

410ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

• Right click (Windows) or Ctrl-click (Macintosh) on the mixer in the left pane. Select Remove All Sound Objects

from the contextual menu.

Using the contextual menu to remove all sound objects from a mixer

Applying filters to a sound object or mixer

You can apply filters both to mixers and to individual sound objects within a mixer. When you apply filters to a mixer,

the filters are applied to all the contained sound objects, in addition to any filters applied directly to the individual

sound objects.

You can add a filter to a mixer or sound object in two different ways:

1 Select a mixer or sound object

2 Click [+].

3 From the Add Filter submenu, select the filter that you want to apply to the mixer or sound object.

Using the [+] button to add a filter

Alternatively, right-click (Windows) or Ctrl-click (Macintosh) on a mixer or Sound object, or on the filters node of a

mixer or sound object. Choose a filter from the Add Filter submenu.

411ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Using the contextual menu to add a filter

Enabling and disabling filters

You can enable and disable individual filters. To do so, right-click (Windows) or Ctrl-click (Macintosh) on the filter

and select or deselect the Enable Filter menu item.

Using the contextual men to enable or disable filters individually

Note that the icon of a disabled filter changes, to display a red x.

Applying an action to multiple filters

To apply an action to all the filters of an object, right-click (Windows) or Ctrl-click (Macintosh) on the filters node of

a mixer or sound object in the Mixer Browser area, and select one of the following:

Enable All Filters Enables all filters applied to the mixer or sound object

Disable All Filters Disables all filters applied to the mixer or sound object

Remove All Filters Removes all filter effects applied to the mixer or sound object

412ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Applying an action to all filters for a given object

You can also remove all filters for a given object by selecting the object or its filter node, clicking the [-] button, and

selecting Remove All Filters.

Using the [-] button to remove all filters

Note: Filters enabled for the mixer or sound object are applied to it before playback. You can also apply filters to a mixer

or its contained sound objects at run time, using Lingo or JavaScript syntax.

Playing a mixer or sound object

To hear a mixer or sound object play back, you can do one of the following:

1 Right-click (Windows) or Ctrl-click (Macintosh) on a mixer or sound object in the Mixer Browser area.

2 Select Play, Pause, or Stop from the pop-up menu.

Using the contextual menu to control playback

Alternatively, select a mixer or sound object. Then use the controls (Play, Pause, and Stop) in the upper-left corner of

the mixer/sound object

413ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Using the playback controls for a mixer or sound object

Playing a mixer is not identical to playing the sound objects that it contains. Any sound objects that are not set to loop

indefinitely will eventually stop. The mixer will continue playing, even if all its component sound objects have stopped.

When you start playing back a sound object, its parent mixer will also start playing.

Note: This is not the same behavior as when you use the script method soundObject.play() at runtime. This method will

have no effect unless the parent mixer is already playing. See “Activating a mixer” on page 416 for more information.

Disabled properties

During playback, all configurable properties except for volume will appear disabled in the Audio Mixer Interface

window. This is the status of both the object needs to be #stopped before setting these properties will have any effect.

During playback, only the volume property can be set

Exporting a mixer or a sound object

You can export a mixer or sound object as a WAV or MP4 audio file, along with filter effects.

1 Select a mixer or sound object in the Mixer Browser area.

2 Click Export To File.

3 Specify a filename and a file type.

4 Click Save.

http://www.google.co.in/url?sa=t&source=web&cd=2&ved=0CCEQFjAB&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS9788C32C-C172-4f75-A3A8-A61BE9DA7886.html&ei=_0__TYDjJIr3rQelttzcDw&usg=AFQjCNFVySIpMqu8BD77F3jhpJlqyNzJVA

414ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Exporting a mixer or sound object as a WAV or MP4 file

The time required to save a file depends on its size. In any case, it is faster than playing the sound in real time.

If the loopCount property of any of the sound objects is set to 0, then the export will continue until the target disk is

full or until you press the Stop Export button, whichever is sooner.

Functionalities like play, pause, and stop are disabled while a file is being saved. While a file is being saved, the Export

To File button changes to Stop Export.

Click the Stop Export button to cancel the export operation.

415ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Modifying mixer, sound object, or Filter properties

Select a mixer, sound object, or a filter in the Mixer Browser area.

416ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Modify the properties displayed in the right pane. For example, you can change the loopCount of a sound object from

1 to 3.

Note: Changes to filter properties apply at run time. Such changes are applicable only for the mixer or sound object to

which the filter is directly applied.

To rename a mixer or sound object, enter a new name in the box to the right of playback controls.

Activating a mixer

Activating a mixer sets the state of the mixer to #playing, but it does not start playing the sound objects contained

in the mixer automatically. You can activate a mixer only if it is in the #paused or #stopped state.

Activating a mixer is similar to calling mixer.play([]) from a script. Do the following to activate a mixer:

1 Right-click (Windows) or Ctrl-click (Macintosh) on the mixer in the Mixer Browser pane.

2 Select Activate from the pop-up menu.

417ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Using the contextual menu to activate a mixer

See mixer.play() for more details on this feature.

Resetting a mixer

When you reset a mixer, any changes made to the Mixer member or its contained sound objects since the last save

operation are discarded. You will not see any confirmation dialog. You cannot undo the Reset operation.

You can reset a mixer in two different ways:

• Select a mixer in the Mixer Browser area. Click [-] and select Reset Mixer from the pop-up menu.

Using the [-] menu to reset a mixer

• Right-click (Windows) or Ctrl-click (Macintosh) on a mixer. In the contextual menu that appears, select Reset

Using the contextual menu to reset a mixer

Note: In Director 11.5.8, the Reset menu option will appear enabled even if you have not made any changes to the mixer.

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWS2CF5A18F-05CC-4bb3-8EAC-E496D85C4029.html&ei=_1D_TYrFKIPorQfnsYz1Dw&usg=AFQjCNFKLPR42fA69YrGYfAcgPS6LPtAkg

418ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

Creating a mixer asset reference

When using Lingo or JavaScript syntax with mixers and soundObjects, you will need to create a reference to a mixer.

You can do so in one of the following ways, depending on your needs:

• Method 1 assumes that you have already created a Mixer member.

vMixer = member("MixerName")

• Method 2 creates a new Mixer member in an empty slot a castLib. There are several possible variants. See new()

and _movie.newMember() for more details.

-- Lingo syntax
vMixer = new(#Mixer)
vMixer = _movie.newMember(#Mixer)
// JavaScript syntax
vMixer = _movie.newMember(symbol("Mixer"))

• Method 3 accesses the mixer property of an MP4 member or sprite. See “Mixing MP4 movie sound with other

sounds” on page 419 for more details.

vSpriteMixer = sprite("MP4").mixer
vMemberMixer = sprite("MP4").member.mixer
vMemberMixer = member("MP4").mixer

Examples

The following code creates a new Mixer member in cast slot 23 of castLib 1, and names it “Mixer23”. It then creates a

soundObject using the sound member “PinkNoise”, and plays the sound.

-- Lingo syntax
vMixer = _movie.newMember(#Mixer, member(23))
vMixer.name = "Mixer23"
vMixer.createSoundObject("Noise", member("PinkNoise"))
vMixer.play()
// JavaScript syntax
vMixer = _movie.newMember(symbol("Mixer"), member(23));
vMixer.name = "Mixer23";
vMixer.createSoundObject("Noise", member("PinkNoise"));
vMixer.play();

Note: You will be able to use the Audio Mixer Inspector to visualize the new Mixer member and its soundObject, and to

control playback.

The Lingo behavior below creates a reference to the mixer property of the MP4 sprite that it is attached to. It then

creates a new soundObject using the sound member "VoiceOver". As a result, the MP4 video plays the voiceover at

the same time as the original soundtrack.

Note: You will only be able to control the mixer of the MP4 sprite using Lingo or JavaScript syntax. The Audio Mixer

Inspector cannot display the properties of an MP4 mixer.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f39.html

419ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

on beginSprite(me)
 vSprite = sprite(me.spriteNum)
 vMixer = vSprite.mixer
 vName = "VoiceOver"
 vSoundObject = vMixer.getSoundObject(vName)
 if not vSoundObject then
 vSource = member(vName)
 vSoundObject = vMixer.createSoundObject(vName, vSource)
 end if
end beginSprite

Note: In Director 11.5.8, the command below will cause Director to crash if it is executed as JavaScript code. The same

line executed as Lingo code works correctly.

sprite("MP4").mixer.createSoundObject(vName, vSource)

Mixing MP4 movie sound with other sounds

Director 11.5 introduced a new #mp4 member type. An #mp4 member allows you to play an external video or audio

file in MP4, F4V or FLV format. Both #mp4 members have an mp4Member.mixer and the sprites that contain them

have an mp4Sprite.mixer property.

Note: In Director 11.5.8, there are issues with using JavaScript in connection with MP4 member and sprite mixers. The

examples below are designed for Lingo implementation only.

The member mixer and the sprite mixer are two separate objects. You can modify the soundObjectList of the sprite

mixer and control each soundObject in the sprite mixer separately.

Note: If the external video file does not contain an audio channel, then its mixer will be set to 0. You will not be able to

use it as an audio mixer. If you want to synchronize sounds with a silent video, you will need to use a Mixer cast member.

You can access the different soundtracks in the video file through the sound objects list of the sprite mixer. You can

add new sound objects to the sprite mixer.

Playing just the soundtrack of a video

To play the sound track of an MP4 member without playing the video, you can control its mixer directly. The following

lines of code play back the sound track of member(“MP4”), and play the sounds recorded in member(“SoundEffects”)

at the same time.

vMixer = member("MP4").mixer
vSoundMember = member("SoundEffects")
vMixer.createSoundObject("SFX", vSoundMember)
vMixer.play()

Playing the video with additional soundtracks

The Lingo behavior is designed to be attached to an MP4 video sprite. It will play the video, the original soundtrack

and the sounds recorded in member(“SoundEffects”) at the same time.

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSA33EC9A8-A3E6-4ca4-940D-03DC05BF5652.html&ei=61L_TdKQBoeqrAfYkeH3Dw&usg=AFQjCNEvBsOWAaGiBXj8eW7f24d5BS6hKA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSA33EC9A8-A3E6-4ca4-940D-03DC05BF5652.html&ei=61L_TdKQBoeqrAfYkeH3Dw&usg=AFQjCNEvBsOWAaGiBXj8eW7f24d5BS6hKA

420ADOBE DIRECTOR BASICS

Audio mixers and sound objects

Last updated 3/24/2014

on beginSprite(me)
 vSprite = sprite(me.spriteNum)
 vMixer = vSprite .mixer
 vSoundMember = member("SoundEffects")
 vMixer.createSoundObject("SFX", vSoundMember)
end beginSprite

421

Last updated 3/24/2014

Chapter 6: Asynchronous programming

Today, features that are common to multitude of applications require asynchronous programming. Some examples

are transitions, sliding menus, dragging and dropping, countdown timers, file downloads, and queries to a remote

server.

The most simplest example of an asynchronous process is email. When you send an email, you may have to wait for

some time before you get a reply. That means, you can spend time doing something else while waiting for the reply,

and you have to check back occasionally to see if the reply has arrived yet. Even if the reply has already arrived, you are

not obliged to deal with it immediately.

The following examples provide a clear understanding of the difference between synchronous and asynchoronous

processes:

Example for a synchronous process

The code for a synchronous process works like a telephone conversation, where everything is treated in sequence

without a break. Here is an example:

on mouseUp(me)
vSprite = sprite(me.spriteNum)
vSprite.member = member("Mouse Up")
puppetSound("Button Click")
go #next

end mouseUp

Everything inside the on mouseUp() handler happens in sequence, with no pauses to wait for a reply. The bitmap

image for the “Mouse Up” member and the audio data from the “Button Click” sound member and the images to

display at the next marker are retrieved from the computer's RAM space, or read from the Director file on the local

hard disk in a fraction of a second. You expect the click to have an immediate effect.

Example for an asynchronous process

An asynchronous process, on the other hand, occurs little by little over a length of time, like an exchange of email

messages. Below is a very simple behavior as an example. To see it in action, download and launch the movie

Dissolve.dir.

The dissolve transition occurs asynchronously over several frames

http://www.adobe.com/support/director/examples/Dissolve.dir

422ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

-- DISSOLVE TRANSITION --
property pSprite
property pFrame
on beginSprite(me)
pSprite = sprite(me.spriteNum)
-- Grab the image of the previous frame
vStageImage = (the stage).image
-- Crop the image to the size of this sprite
vStageImage = vStageImage.crop(pSprite.rect)
-- Show image of previous frame in this sprite
pSprite.member.image = vStageImage
-- Start countdown
pFrame = 50
end beginSprite
on enterFrame(me)
if pFrame then
-- Reduce the opacity of this sprite
pFrame = pFrame - 1
pSprite.blend = 2 * pFrame
end if
end enterFrame

Basics of asynchronous programming

Asynchronous code relies on three principles:

• The operation is divided up into multiple steps

• A regular event is used to process the operation

• Property variables are used to monitor the state of the operation as it progress

Based on these principles, your code consists of the following steps:

1 Starting the operation.

2 Processing the operation as it progresses.

3 Dealing with the final state when the operation is complete.

Sample program

To understand the logic involved, download and launch the movie DragAndDrop.dir. Click the word “and”, drag it to

the word “Drop”, and then release it.

http://www.stage.adobe.com/support/director/examples/DragAndDrop.dir

423ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

A drag and drop operation starts with a mouseDown and ends when the mouse is released.

In the DragAndDrop.dir movie:

1 The operation starts when you click the And sprite. The on mouseDown() handler in the Drag and Drop behavior

initializes the operation and sets a property which is used to track the state of the operation.

2 As you drag the mouse pointer, the position of the And sprite is updated. Once, per frame, the on enterFrame()

handler moves the And sprite to the same position relative to the mouse.

3 When you release the mouse, the operation ends. As part of its action, the on enterFrame() handler checks if the

mouseDown property is TRUE. If it is not, the mouse is released by the user, and the mDrop() handler is called to

complete the operation.

Here is a simplified version of behavior that handles the Drag and Drop operation. It is attached to the sprite displaying

the word “And”.

424ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

property pStartLoc
property pSprite
property pOffset
on mouseDown(me)
pSprite = sprite(me.spriteNum)
pStartLoc = pSprite.loc
pOffset = pStartLoc - the mouseLoc
end mouseDown
on enterFrame(me)

if not pOffset then
exit
else if the mouseDown then

me.mDrag()
else

me.mDrop()
end if

end enterFrame
on mDrag(me)
pSprite.loc = the mouseloc + pOffset
end mDrag
on mDrop(me)
vLoc = pStartLoc
vTarget = sprite("Drop")
vRect = vTarget.rect
if _mouse.mouseLoc.inside(vRect) then
vLoc = vTarget.loc
end if
pSprite.loc = vLoc
pOffset = 0 -- stop calling mDrag() on each #enterFrame event
enf mDrag

If you are unsure how this behavior works, place a debug breakpoint at the beginning of each of the handlers, launch

the movie, and start to drag the And sprite. The Debugger window will open, and you will be able to step through the

code, line by line to see what it does. For more information on using the Debugger, see Debugging scripts in director.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7ffb.html

425ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

Debugger

Tracking the progress of the operation

Notice how the on enterFrame() handler checks the state of the dragging operation. The operation can be in one of

the following states:

Inactive pOffset is VOID or 0.

Drag pOffset will be a point and _mouse.mouseDown will be TRUE.

Drop The user has just released the mouse. The property pOffset will still be a point but _mouse.mouseDown will

have become FALSE.

Events for asynchronous operations

This section introduces the events that you can use to monitor the progress of an asynchronous operation.

Director generates a number of different events on every frame. See “Using frame events wisely” on page 397. In

addition to these events, you can create timeout objects (see below) and #timeMS events with 3D members. See

“timeMS event callback” on page 359.

426ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

When performance is a priority, you should use an on enterFrame event handler, as demonstrated in the demo movies

in“Sample program” on page 422. For projects where you are more concerned with creating simple code, or where you

are synchronizing sprite movements with the mouse, use the following:

#stepFrame events sent to objects that are added to the actorList. See “actorList and #stepFrame events” on page 426

for more details.

Timeout objects See “Timeout objects” on page 428 for more information.

These two solutions allow you to generate regular events as they are needed, and to stop generating them when your

code no longer requires them.

Note: To update sprite display or positions, it is recommended that you use #enterFrame events. Using #stepFrame events

for such operations may affect performance. See “Using frame events wisely” on page 397 for a comparison of frame event

performance.

actorList and #stepFrame events

This section describes the use of the actorList for operations where performance is not critical.

Director provides a special list called the actorList, which is designed to simplify the control of asynchronous

operations. You can add behavior instances, child instances of parent scripts, and even scripts themselves to the

actorList. Once, per frame, Director sends a #stepFrame event to all objects listed in the actorList. For every object

included in the actorList, any code inside an on stepFrame event handler will be executed once per frame.

Director also sends a #stepFrame event when any of the following commands are executed:

• go()

• play() (3D)

• updateStage()

Any calls to go(), play(), or updateStage() made inside an on stepFrame() handler will be silently ignored. See on

stepFrame for more details of the #stepFrame event and its timing.

Note: To update sprite display or positions, it is recommended that you use #enterFrame events. Using #stepFrame events

for such operations may affect performance. See “Using frame events wisely” on page 397 for a comparison of frame event

performance.

Adding an object to the actorList

To add an object to the actorList, use the following syntax:

_movie.actorList.append(object)

Removing an object from the actorList

To remove an object from the actorList, use the following syntax:

_movie.actorList.deleteOne(object)

See “Using an actorList event to remove an object” on page 428 for precautions to take when an object removes itself

from the actorList inside its own on stepFrame() handler.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b55.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7962.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f42.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-793b.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f26.html

427ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

Clearing the actorList

To clear everything out of the actorList, you can use one of the following techniques:

• _movie.actorList = []

• _movie.actorList.deleteAll()

• clearGlobals()

Note: This command also deletes all global variables.

Order of execution

Director sends a #stepFrame event to each of the objects on the actorList after it generates the #exitFrame event, and

before it generates a #prepareFrame event. No updates to the Stage display will occur until after all on

prepareFrame() handlers have completed. You can also send a custom event to the actorList at any time, using the

following syntax:

-- Lingo syntax
call(the actorList, #eventSymbol{, parameters})
// JavaScript syntax
_movie.call(symbol("eventSymbol"),_movie.actorList{,parameters})

The objects on the actorList will receive and process the event in the order that they appear on the actorList.

Example

To test the use of the call() method on the actorList, download and launch the actorListTest.dir.

The actorListTest.dir movie places three script objects on the actorList.

• An instance of the Set Color and Text parent script.

• The instance of the Rotate Text behavior that is attached to the rotating text sprite.

• A pointer to the Just Delete Me script.

The Rotate Text script uses an on stepFrame() handler to rotate the sprite that it is attached to. The two other script

objects do not have an on stepFrame() handler. Their role is to illustrate other aspects of the way the actorList works.

Sending a custom message to the actorList

If you click on the top button in the movie actorListTest.dir, a #customEvent message is sent to the actorList with two

parameters. The second parameter is an empty property list. The Set Color and Text instance receives the

#customEvent call first, and uses it to modify the contents of the property list. The Rotate Text instance then receives

the #customEvent call along with the modified property list. It uses the contents of the property list to change the

display in the rotating text sprite. Finally, the Just Delete Me script then receives the message and plays a sound.

This illustrates:

• The different type of script objects which can usefully be added to the actorList.

• The order in which objects receive events depends on the order in which they appear in the actorList.

• The use of a list to pass data between objects on the actorList.

http://www.adobe.com/support/director/examples/actorListTest.dir
http://www.adobe.com/support/director/examples/actorListTest.dir

428ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

Using an actorList event to remove an object

If you click on the lower button, the event #deleteMe is sent to the actorList. The Set Color and Text instance receives

the #deleteMe call first, and uses it to remove itself from the actorList. There are now only two objects remaining on

the actorList, but Director considers that it has already sent the #deleteMe call to the first item on the list. For this

reason, the event is never sent to the Rotate Text behavior. Instead, it is sent immediately to the second item on the list;

the Just Delete Me script deletes itself from the actorList, but the text sprite continues to rotate.

The same effect will occur if you use a #stepFrame event to remove an object from the actorList. If there is only one

object on the actorList, or if it is not a problem if the next object misses a #stepFrame event, then you do not need to

do anything special. If you want to be sure that all objects on the actorList receive a #stepFrame event in all

circumstances, then you can use the handler below:

on RemoveFromActorList(aInstance)
vIndex = (the actorList).getPos(aInstance)
if not vIndex then

exit
end if
(the actorList).deleteAt(vIndex)
if vIndex <= (the actorList).count then

-- The instance now at <vIndex> will not receive the
-- #stepFrame event automatically. Send it manually:

call(#stepFrame, [the actorList[vIndex]])
end if

end RemoveFromActorList

The actorListTest.dir movie contains a movie script named ActorList Handlers that includes a similar handler. To use

it, call the RemoveFromActorList() method from an on stepFrame() handler.

on stepFrame(me)
-- Do whatever else needs to be done
RemoveFromActorList(me)
end stepFrame

Note: When you are authoring a movie, Director will stop sending #stepFrame events when the movie is stopped. When

the movie starts again, any objects that are still on the actorList will start receiving #stepFrame events again. You may

want to clear all objects from the actorList before you restart your movie. One way to do this is to place a

clearGlobals() call in the movie's prepareMovie() handler.

Timeout objects

A timeout object is a script object that acts like a timer and sends a message at regular intervals. This is useful for

scenarios that require specific things to happen at regular time intervals, or after a particular amount of time has

elapsed. A timeout object can send messages that can in turn call event handlers inside child objects or in movie scripts.

Callbacks from timeout objects do not occur at precise intervals. It is not possible, for example, to create a metronome

that will give a steady beat. Callbacks from timeout objects are triggered in the “idle” period that occurs after the Stage

image has been updated, and before the next stage update is due. If a callback falls due during the time when the screen

is updating, it will be delayed until the update is complete. This delay is cumulative. Director will make no attempt to

catch up by triggering the next callback sooner. The period property of timeout objects determines the shortest period

between two callback events, not the average period.

429ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

Timeout callbacks are only issued while the movie is running. While authoring, timeout callbacks will stop as soon as

you stop the movie. If you have any persistent timeout objects, they will start generating callbacks again when you

restart the movie.

Creating a timeout object

You create a timeout object by using the new() keyword. You must specify a name for the object, a handler to be called,

and the frequency with which you want the handler to be called. After a timeout object is created, Director keeps a list

of currently active timeout objects, called timeoutList.

Syntax

The Lingo syntax for creating timeout objects changed with Director MX 2004 (D10), in order to make it consistent

with the way other objects are created. Movies authored in Director MX (D9) and earlier have a scriptExecutionStyle

property set to a value of 9, which allows you to use the syntax found in Director MX and earlier.

-- Lingo syntax when scriptExecutionStyle is set to 10
variableName = timeout().new(timeoutName, timeoutPeriod, timeoutHandler {, targetObject})
-- Lingo syntax when scriptExecutionStyle is set to 9 (for older movies only)
variableName = timeout(timeoutName).new(timeoutPeriod, timeoutHandler {, targetObject})
// JavaScript syntax (all versions since Director 7)
variableName = new timeout(timeoutName, timeoutPeriod, timeoutHandler, targetObject)

This statement uses the following elements:

variableName is the variable you are placing the timeout object into.

timeout indicates which type of Lingo object you are creating.

timeoutName is the name you give to the timeout object. This name appears in the timeoutList. It is the name property

of the object. If you create a new timeout object with the name of an existing timeout object in the same movie, the

existing timeout object will be replaced. Timeout namespace is restricted to the current window. Two windows

displaying the same movie will each have their own timeoutList.

new() creates a new object.

timeoutPeriod is an non-negative integer indicates the minimum number of milliseconds after which the timeout

object should call the handler you specify. This is the period property of the object. For example, a value of 2000 calls

the specified handler every 2 seconds. Setting the timeoutPeriod to 0 stops the timeout object from sending any

callbacks.

timeoutHandler is the symbol name of the handler you want the object to call. This is the timeoutHandler property of

the object. You can use either a symbol or a string. For example, a handler called on accelerate() could be specified as

#accelerate or “accelerate”.

targetObject indicates which child object’s handler should be called. This is the target property of the object. It allows

specificity when many child objects contain the same handlers. If you omit this parameter, Director looks for the

specified handler in the movie script.

Examples

The following statement creates a timeout object named timer1 that calls an on accelerate() handler in the child

object car1 every 2 seconds:

430ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

-- Lingo syntax (with a scriptExecutionStyle of 9)
vTimer = timeout("timer1").new(2000, #accelerate, car1)
-- Lingo syntax (with a scriptExecutionStyle of 10)vTimer = timeout().new("timer1", 2000,
#accelerate, car1)
// JavaScript syntaxvTimer = new timeout("timer1", 2000, "accelerate", car1)

Note: The timeout properties time and persistent are set implicitly when a new timeout object is created. The value if time

is set to the current value of _system.milliseconds, and the value of persistent is set by default to 0. If you create a new

timeout object with the same name as an existing one, the current value of persistent will be maintained.

Deleting a timeout object

Use the forget() (Timeout) method to delete a timeout object. The following handler deletes the timeout object that

activated it.

on doItOnce(me, aTimeout)
aTimeout.forget()
-- Add code here that will be executed only once

end doItOnce
// JavaScript syntax
function doItOnce(me, aTimeout)
{
aTimeout.forget();
// Add code here that will be executed only once
}

The following handler will delete all timeout objects that are currently active:

-- Lingo syntax
on killAllTimeouts()

ii = the timeoutList.count
repeat while ii

timeout(ii).forget()
ii = ii - 1

end repeat
end killAllTimeouts
// JavaScript syntax
function killAllTimeouts(){
ii = _movie.timeoutList.count
for(ii;ii>0;ii--){
timeout(ii).forget()
}
}

Note: _movie.call("forget", _movie.timeoutList) deletes every second timeout object. When the first timeout object is

deleted, the second timeout object will become the first item in the timeoutList, but the #forget event will now be sent to

the second object in the list, so the object that is now first in the list will never receive it.

Timeout object properties

Timeout objects have the following properties which you can both get and set:

• “name” on page 431

• “period” on page 431

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-73b5.html

431ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

• “persistent” on page 431

• “target” on page 432

• “Time” on page 432

• “timeoutHandler” on page 432

name

This is the name of the timeout object as defined when the object is created. You can change the name of a timeout

object at any time. If, in any given movie, you create a timeout object with the same name as another timeout object,

the first object will be replaced by the new one.

-- Lingo syntax
timeout("John").name = "George"
timeout().new("Peter", 40, #keepTheBeat)
put _movie.timeoutList.getLast().name
-- "Peter"
-- JavaScript syntax
timeout("John").name = "George";
new timeout("Peter", 40, "keepTheBeat");
trace(_movie.timeoutList.getLast().name);
// Peter

period

The minimum number of milliseconds between timeout events sent by the timeout object to its timeoutHandler.

Setting the period to 0 will suspend all further callbacks to the timeoutHandler, but it will not suspend system messages

relayed by the timeout. See “Relaying system events with timeout objects” on page 434.

This timeout handler decreases the timeout’s period by one second each time it is invoked, until a minimum period of

2 seconds (2000 milliseconds) is reached.

-- Lingo syntax
on handleTimeout(me, aTimeout)

aTimeout.period = max(2000, aTimeout.period - 1000)
end handleTimeout
-- JavaScript syntax
function handleTimeout(aPlaceholder, aTimeout) {
aTimeout.period = list(2000, aTimeout.period - 1000).max();
}

persistent

Determines whether the given timeout object is removed from the timeoutList when the current movie stops playing.

If TRUE, the timeout object remains active. If FALSE, the timeout object is deleted when the movie stops playing. The

default value is FALSE.

Setting this property to TRUE allows a timeout object to continue generating timeout events in other movies. This is

useful when one movie branches to another with the ‘go to movie’ command.

The following statement creates a timeout object and makes it persist across movies:

432ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

-- Lingo syntax (Director 10 and later)
global gTO
gTO = timeout().new("perpetualMotion", 50000, "doItAgain")
gTO.persistent = TRUE
// JavaScript syntax
_global.gTO = new timeout("perpetualMotion", 50000, "doItAgain")
_global.gTO.persistent = true;

target

Indicates the child object that the given timeout object will send its timeout events to. Timeout objects whose target

property is not a script or script instance will send their events to a handler in a movie script. The target is sent as the

first parameter of all callbacks, even when the callback is in a movie script. See “Associating custom properties with

timeout objects” on page 435 for ideas on how to utilize this feature.

This property is useful for debugging behaviors and parent scripts that use timeout objects. This statement displays the

name of the child object that will receive timeout events from the timeout object timerOne in the Message window:

-- Lingo
put timeout("timerOne").target
// Javascript
trace(timeout("timerOne").target)

Time

To determine when the next message will be sent from a particular timeout object, check its time property. The value

returned is the point in time, in milliseconds, when the next timeout message will be sent. You can change the time

when the timeout object will next create a callback by setting its time property. The following example sets the time for

the next callback to 10 seconds from now.

-- Lingo syntax
timeout("timer1").time = the milliseconds + 10000
// JavaScript syntax
timeout("timer1").time = _system.milliseconds + 10000;

You cannot specify the time property when you create a new timeout object, but you can set it at any time. The

following lines create a timeout object which will start triggering callbacks after a delay of 5 seconds, and will

subsequently trigger a callback every second.

• vTimeout = timeout().new("Take5", 1000, #WaitASecond)

• vTimeout.time = the milliseconds + 5000 Setting the time of a timeout object whose period is 0 will not trigger any

callbacks.

timeoutHandler

Represents the name of the handler that will receive timeout messages from the given timeout object. Its value can be

either a symbol, such as #timeExpiredHandler, or a string such as "timeExpiredHandler". Use the timeoutHandler as

a handler within the timeout object’s target object, or in a movie script if the timeout object has no target specified. If

no handler of that name is found, callbacks will fail silently.

Example

This statement sets the timeoutHandler of the timeout object Quiz Timer to #countDown.

433ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

-- Lingo
timeout("Quiz Timer").timeoutHandler = #countDown
// Javascript
timeout("Quiz Timer").timeoutHandler = "countDown"

Using timeoutList

When you begin creating timeout objects, you can use timeoutList to check the number of timeout objects that are

active at a particular time. The following statement sets the variable ii to the number of objects in the timeoutList by

using the count property:

ii = _movie.timeoutList.count

You can also refer to an individual timeout object by its index number in the list.

The following statement deletes the second timeout object in timeoutList by using the forget() method:

timeout(2).forget()

Order of service

If more than one timeout object is ready to send its callback message, the order in which the messages are sent will be

the reverse order of their appearance on the timeoutList. You can remove a timeout object from the timeoutList,

without destroying the object. If it is no longer on the timeoutList, it will not trigger any callbacks. The movie script

handlers below allow you to test both these ideas.

-- Lingo syntax
global gTimeouts
on testTiming()

gTimeouts = []
repeat with vName in ["Paul", "George", "John", "Peter"]

vTimeout = timeout().new(vName, 1, "WhoGoesFirst")
gTimeouts.append(vTimeout)

end repeat
end
on WhoGoesFirst(placeholder, aTimeout)

put aTimeout.name
_movie.timeoutList.deleteOne(aTimeout)

end
-- In the Message window
testTiming()
-- "Peter"
-- "John"
-- "George"
-- "Paul"
put the timeoutList, gTimeouts
-- [] [timeOut("Paul"), timeOut("George"), timeOut("John"), timeOut("Peter")]

If you return a timeout to the timeoutList, it will start generating callback events again.

434ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

(the timeoutList).append(gTimeouts[2])
-- "George"
// JavaScript syntax
function testTiming(){
_global.gTimeouts = list("Paul", "George", "John", "Peter");
for(ii=1;ii<5;ii++){
vName = gTimeouts[ii];
vTimeout = new timeout(vName, 1, "WhoGoesFirst");
gTimeouts[ii] = vTimeout;
}
}
function WhoGoesFirst(placeholder, aTimeout) { trace(aTimeout.name);
_movie.timeoutList.deleteOne(aTimeout);
}
-- In the Message window
testTiming(); // George // Paul // Peter // John trace(_movie.timeoutList, gTimeouts) // <[]>
<[timeOut("Paul"), timeOut("George"), timeOut("John"), timeOut("Peter")]>
--If you return a timeout to the timeoutList, it will start generating callback events again.
_movie.timeoutList.append(gTimeouts[2])
0
// George

Relaying system events with timeout objects

When you create timeout objects that target specific child objects, you enable those child objects to receive system

events. Timeout objects relay these events to their target child objects.

The system events that can be received by child objects include #prepareMovie, #startMovie, #stopMovie,

#prepareFrame, and #exitFrame. You can include handlers for these events in child objects, and make the child objects

respond to them for whatever purposes you see fit.

System events received by child objects are also received by movie scripts, frame scripts, and other scripts designed to

respond to them. To test this behavior, download and launch the SystemEvents.dir. Click on the System Event Relay

Test button and observe the output in the Message window.

The SystemEvents.dir movie creates a timeout object with a period of 0 to generate system events

When you click the button, a child instance of the script System Event Relay Test is created. An edited version of the

script is shown below.

http://www.adobe.com/support/director/examples/SystemEvents.dir

435ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

property pTimeout
on new(me)
vName = "<" & the last word of string(me)
pTimeout = timeout().new(vName, 0, #invalidHandler, me)
pTimeout.persistent = TRUE -- to survive "go movie"
return me
end new
on forget(me)
pTimeout.forget()
pTimeout = VOID
end forget
on exitFrame(me, aTimeout)
put #exitFrame, aTimeout
go movie the movieName
end
on startMovie(me, aTimeout)
put #startMovie, aTimeout
me.forget()
end

This technique is useful for detecting events such as #stopMovie in a child object that is stored as a global or as an object

on the actorList.

If you use a behavior as the target for a timeout object, the behavior will receive #prepareFrame and #exitFrame events

twice: once from the sprite it is attached to, and once from the timeout object.

You can determine the source of the call by checking for a second parameter. The on exitFrame() Lingo handler

below ensures that it is not activated when the call comes from a timeout object.

on exitFrame(me, aTimeout)
if not voidP(aTimeout) then exit

end if
-- If we get here the event came from the spriteend

Associating custom properties with timeout objects

When the target of a timeout object is not a script or a script instance, the timeout will direct its callback to a handler

in a movie script. In all cases, the callback handler will receive two parameters:

• The target property of the timeout

• A reference to the timeout object itself

You can exploit this feature as a way to associate a custom property to a timeout object.

The following sample code includes two movie script handlers: The createCountdown() handler creates a timeout

object. The Countdown() handler is the timeoutHandler for the timeout object.

436ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

on createCountdown()
vTimeout = timeout().new("Countdown", 1000, #Countdown, 10)
vTimeout.time = the milliseconds

end createCountdown
on Countdown(aRemaining, aTimeout)

put aRemaining
if not aRemaining then
aTimeout.forget()

end if
aTimeout.target = aRemaining - 1

end Countdown

When you call createCountdown(), it sets the target of the new timeout object to the integer 10. The Countdown()

handler receives this value as the first parameter and then modifies the target value of the timeout. The result is a

countdown from 10 to 0, printed out in the Message window.

The target value can be any Lingo type, including a list or a property list. In general, keep the following in mind:

• When using a reference to a script instance as a target, the target handler in that particular script instance is called.

This technique does not allow the use of custom properties.

• When using a reference to anything other than a script instance (such as a property list) as a target, the target

handler in a movie script is called. This technique allows the use of custom properties.

Downloading data from a remote server

Sometimes, in your projects, you may need to retrieve a file that is located on a remote server. Your end users will not

be able to use the contents of that file until a copy of the file is downloaded onto their computers.

This topic describes the concepts in retrieving data from a remote server and explains how to retrieve data in an

asynchronous operation.

Downloading or preloading

If your movie is playing back as a Shockwave application inside a browser, you will not have any access to the end-

user's local disks. The local copy of the file will be written into the browser's cache folder, but your Shockwave movie

will not be able to know what file path is used. This process is known as preloading. For preloading, use the

preloadNetThing() method.

If your movie is playing in Director's authoring environment or in a projector, you can have direct access to the end-

user's local disks (or at least to those folders for which the current user has write privileges). In this case, you can specify

a path to a file in a local folder to which the remote file will be downloaded. You can use the downloadNetThing ()

method in this case.

You can also use preloadNetThing(), if you do not wish to specify a local file path. In this case, the local copy of the file

will be stored in Director's cache. If your application makes a preloadNetThing() request for the file a second time, the

cached version will be used by default.

getNetText and postNetText

You may want to send data to a remote server, and to retrieve confirmation that it was successfully received. The

confirmation may be quite a lengthy text. For example, you may send a username and a password to a remote server,

and receive in return a set of waiting messages that have been stored in a database.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c62.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c71.html

437ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

For this purpose, you can use either the GET HTTP method, through the getNetText() command, or the POST HTTP

method, through the postNetText() command. In both cases, Director will retrieve the result, but will wait for you call

netTextResult() before providing the result.

Retrieving data as an asynchronous operation

For all four of these remote processes, you need to start the operation and then check on a regular basis whether all the

return data has been successfully received. Finally, you will need to treat the result.

Here is a very simple example written as a Lingo behavior to be placed on a button sprite.

property pNetID -- integer id of the net operation
property pURL -- url of the remote file
property pMember -- text member in which to show result
on mouseUp(me)

me.mStartOperation()
end mouseUp
on enterFrame(me)

if pNetID then
me.mCheckProgress() -- calls mCompleteOperation() when done

end if
end enterFrame
on mStartOperation(me)

pMember = member(2) -- <HARD-CODED: name may change>
pURL = the moviePath&"importTest.txt"
pNetID = preloadNetThing(pURL)

end mStartOperation
on mCheckProgress(me)

if netDone(pNetID) then
me.mCompleteOperation()

end if
end mCheckProgress
on mCompleteOperation()

vNetError = netError(pNetID)
pNetID = 0
case vNetError of

"OK", "":
pMember.importFileInto(pURL)
otherwise: -- an error occurred
pMember.text = "Error: "&vNetError

end case
end mCompleteOperation

To test this, download and launch the importTest.dir. When you click the ImportFileInto button, the movie reports

an error. This is the expected behavior.

The error message indicates that the file required for preloading does not exist.

The error message indicates that the file required for preloading does not exist

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c6e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c63.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c64.html
http://www.adobe.com/support/director/examples/importTest.dir

438ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

To check that the preload process works correctly, create a file named importTest.txt and place it alongside the

importTest.dir movie. You can include whatever text you want in the file. If the file exists, then the movie will be able

to preload it.

To test this in a browser, you will need to upload both the movie and the text file to the same folder on your server,

and then use your browser to connect to the movie.

Testing asynchronous code in a browser

Tracking download progress

Each time you call one of the methods preloadNetThing(), downLoadNetThing(), getNetText(), and postNetText(), it

returns a unique positive integer. The return value increases by 1 on each call. You can use this net ID integer to

identify that particular net operation.

You can use the net ID with getStreamStatus() or with tellStreamStatus() and streamStatus() to obtain information

about how a net operation is progressing.

To see an example of using getStreamStatus() to display a progress bar, download and launch the movie Progress.dir.

The Progress.dir movie shows a textured progress bar as it downloads a 2MB image file from a server

The following handler checks the progress of a net operation identified by aNetID. The handler also sets the width

sprite("Progress") to a value between 0 and 100 to show how much of the file has been downloaded.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c6d.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c60.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-79f2.html
http://www.adobe.com/support/director/examples/Progress.dir

439ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

on DisplayProgress(aNetID)
vStatus = getStreamStatus(aNetID)
vBytesTotal = vStatus.bytesTotal
if vBytesTotal then
vProgress = vStatus.bytesSoFar / float(vBytesTotal)
else
-- The download might not have started, or it may be a
-- streaming download with no fixed length
vProgress = 0.0
end if
vWidth = 100 * vProgress
vSprite = sprite("Progress")
vSprite.right = vSprite.left + vWidth
end DisplayProgress

Interacting with PHP scripts

To send data to a PHP script, you can use either the GET HTTP method, through the getNetText() command, or the

POST HTTP method, through the postNetText() command. In both cases, Director will retrieve the result, but will

wait for you call netTextResult() before providing the result.

Here is a very simple PHP script. It returns the input if the input is a number between 1 and 100, or an error string if

the input is not an integer or outside the given range.

<?php
$integer = $_REQUEST['input'];
if (!is_numeric($integer)) {
die("Error: number expected");
}
if ($integer > 100) {
die("Error: number greater than 100");
}
if ($integer < 1) {
die("Error: number less than 1");
}
echo $integer;
?>

Note that the script uses the $_REQUEST superglobal. This means that you can test this script using either the GET

or the POST methods. Create a text file, paste this script into it, then name the script test.php and upload it onto your

server.

 Suppose the file on your server is accessible as http://my.example.com/director/test.php. You can test how it works by

entering URIs such as:

http://my.example.com/director/test.php?input=0
http://my.example.com/director/test.php?input=1
http://my.example.com/director/test.php?input=100
http://my.example.com/director/test.php?input=101
http://my.example.com/director/test.php?input=George

Note: If you can test your PHP scripts independently of your Director implementation, you will find it easier to catch

errors in the PHP scripts themselves. If you can only test them from a Director movie, it may be difficult to distinguish

between Director errors and PHP errors.

Here is a very simple behavior. You could create a movie, and attach this to a button sprite.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c6e.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c63.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7c64.html

440ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

property pNetID -- integer id of the net operation
on mouseUp(me)
me.mStartOperation()
end mouseUp
on enterFrame(me)
if pNetID then
me.mCheckProgress() -- calls mCompleteOperation() when done
end if
end enterFrame
on mStartOperation(me)
vFolder = "http://my.example.com/director/" -- use valid URL
vURI = vFolder&"test.php?input=50"
pNetID = getNetText(vURI)
end mStartOperation
on mCheckProgress(me)
if netDone(pNetID) then
me.mCompleteOperation()
end if
end mCheckProgress
on mCompleteOperation()
vNetError = netError(pNetID)
case vNetError of
"OK", "":
vResult = netTextResult(pNetID)
otherwise: -- an error occurred
vResult = "Error: "&vNetError
end case
pNetID = 0
alert vResult
end mCompleteOperation

If you want to experiment with postNetText(), you can use the following handler instead of the mStartOperation()

handler above.

on mStartOperation(me)
vFolder = "http://my.example.com/director/" -- use valid URL
vURI = vFolder&"test.php"
vData = ["input": 50]
pNetID = postNetText(vURI, vData)
end mStartOperation

PHP scripts are case sensitive. A PHP variable called ‘Input’ is not the same as a variable called ‘input’. This makes it

risky to use symbols as the properties of the property list that acts as the second parameter for the postNetText() call.

Try executing the following lines in the Message window to understand why.

 trace(#mixed) -- creates #mixed as a symbol with a lower-case "m"
 -- #mixed
trace(string(#Mixed))
 -- "mixed"
trace(string(#mixer)) -- built-in symbol with an upper-case "M"
 -- "Mixer"

To avoid issues due to the case-sensitivity of PHP scripts, always use strings for the property names in the data property

list sent with a postNetText() call, as shown in the example above.

To test a postNetText() operation, complete with feedback to indicate that something is happening, download and

launch the php.dir.

http://www.adobe.com/support/director/examples/php.dir

441ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

Testing a postNetText() with an invalid file path to the remote server

If you click on the PHPQuery() button, you see that the progress bar starts to move, and then an error message appears.

This indicates that the domain name and folder path used in the PHPQuery() handler of the PHP Query movie script

are invalid. You then need to edit the following hard-coded lines, using the values appropriate for your own server:

 vFolder = "http://my.example.com/director/"
vPHP = "test.php"

You may want to use a call to a PHP script to return an image. Displaying an image retrieved from a PHP script in a

Shockwave movie requires special care. The importFileInto method will not work. If you set the fileName (Member)

of a Bitmap member to the URI of the PHP script, then the operation may fail. It will only succeed if you set the

fileName of a member that is already linked to an external file.

Use the following steps to ensure that you can display the image:

1 Create a tiny placeholder image file and place it alongside your Director movie

2 Import this placeholder image as a Bitmap, using the Link To Exernal File option

3 When your PHP operation completes, set the fileName of this linked Bitmap member to the URI of the PHP script.

Querying a MySQL database

Many projects require a Director movie to communicate with an online database. For example, you may be creating a

game with a high-score table, and the scores may be recorded in a database on your web server. One common scenario

is the use of a PHP script that queries a MySQL database on the same server. When the MySQL data returns a response

to the PHP script, the PHP script can echo information back to the Director movie.

The following is an extract of a PHP script which makes a query to a MySQL database.

$sql = " SELECT DISTINCT id, screenName, userName FROM User
WHERE User.username = TEST NAME'
AND User.password = 'TESTING'";
$result = mysql_query($sql);

You may want to return the result as an XML string. To do so, use the XML Parser Xtra to convert it to a format that

Director can use.

Alternatively, you can prepare the output in a format that Director can easily convert to a property list. This has the

advantage of using less bandwidth than the same data formatted is an XML string. The disadvantage is that the PHP

developer will need to use a proprietary format for the output.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f84.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7f7c.html

442ADOBE DIRECTOR BASICS

Asynchronous programming

Last updated 3/24/2014

$row = mysql_fetch_assoc($result);
$id = $row['id'];
$screenName = $row['screenName'];
$userName = $row['userName'];
$output = '[#id:'.$id.',#screenName:"'.$screenName.'",#userName:"'.$userName.'"]';
echo $output;

443

Last updated 3/24/2014

Chapter 7: Unicode support in Director

Unicode is a computer industry text-encoding standard that lets computers consistently represent and manipulate text

expressed in any of the world's writing systems.

Adobe Director supports many features of Unicode and provides support for multilingual data in movies. Using

Director, you can create and view movies containing text in languages other than English.

Director uses UTF-8 encoding for Unicode support. External data formats that are supported are DBCS, UTF-8, UTF

16, and UTF 32.

You can use Director's Unicode support to perform tasks such as creating cast members, creating external casts, adding

comments for a cast member, naming files, and linking casts in any language. Unicode support in scripting helps you

to create variables, function names, and strings in multiple languages.

Upgrade the custom Xtras using the XDK provided with Director to make them Unicode-compliant. For more details,

refer to the XDK documentation.

Limitations of Unicode support in Director

• Languages written right-to-left are not supported.

• To view Unicode text correctly in the Shockwave® Player, users must install the required fonts on their computer.

• 3D model names in Unicode are not supported.

• Unicode names for HTTP paths are not supported.

• Because browsers support only ASCII characters in the URL, you cannot play a Director movie in the following

scenarios:

• Playing a movie published to the internet using a Unicode name.

• Playing a movie with a Unicode name downloaded from the browser.

• Playing a Shockwave® movie that has an external cast or is an externally linked cast member with a Unicode

name accessed from a URL.

• You cannot name a scripting Xtra as a Unicode string using the 'kMoaMmDictType_MessageTable' registry key.

Also, you cannot expose lingo functions named in Unicode by using the scripting Xtras.

• The .x32 file on Windows and the .xtra file on Mac that is copied into the configuration Xtras folder cannot have a

Unicode name.

Encoding and fonts

To view Director movies created in any of the Unicode-compliant languages, you must have the required fonts and

language packs installed on your computer.

Displaying text on your computer screen requires two different technologies:

• An encoding system: to represent the characters of a language in binary terms that a computer can understand

• A font: to define the shape of those characters

444ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

The Unicode standard provides a way to encode over 100,000 different characters from 93 different writing systems.

Each character is represented by a unique number. You can use the charToNum() function to discover what that

number is for each character that you type. You can find tables of UTF mappings here.

UTF-8 uses different numbers for characters from different writing systems even if they look the same

UTF-8 encoding numbers are not designed to be readable by humans. Humans prefer to read shapes. A font is

essentially a look-up table that converts a number into a human-readable shape.

There are few fonts, if any, that contain data for more than 100,000 different characters. Most fonts are designed for a

small number of specific writing systems. To display characters from a specific writing system, your end users will need

to have fonts that can display that writing system installed on their computers.

The Segoe UI Mono font (used in the Message window above) copes with 15 character sets from 7 writing systems

For a multilingual project that is targeted at users in a variety of locations, you will need to ensure that you include the

appropriate fonts with your application. If the variety of languages that you need to display is diverse, it may be difficult

to find a single font that covers all your requirements.

If the end-users need to input text in different languages, you can use the charToNum() value of the characters they

type to indicate which writing system they are using. You can use this to set the font appropriately.

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b4a.html
http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c1a1b3-7b4a.html

445ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

Here is a simple behavior that you can attach to a text sprite. It automatically selects between fonts for Roman, Cyrillic,

or Thai characters, depending on the text that the user begins to type.

property pFontSelected
on keyDown(me)
 if not pFontSelected then
 vCharNum = charToNum(_key.key)
 me.mSelectFontFor(vCharNum)
 end if
 pass
end keyDown
on mSelectFontFor(me, aCharNum)
 if aCharNum < 65 then
 exit
 else if aCharNum < 128 then
 vFont = "Roman"
 else if aCharNum < 1024 then
 exit
 else if aCharNum < 1280 then
 vFont = "Cyrillic"
 else if aCharNum < 3584 then
 exit
 else if aCharNum < 3712 then
 vFont = "Thai"
 else
 exit
 end if
 vMember = sprite(me.spriteNum).member
 vMember.font = vFont

 pFontSelected = TRUE
end mSelectFontFor

For your own projects you will need to customize this behavior by indicating the appropriate code number ranges and

the appropriate font names.

Writing systems

If you need to work with a language that you do not understand well, then you may need to learn more about its writing

system. This may be very different from the writing system of your own language. This article provides a few ideas on

how language systems differ, and how well Director is able to cope with these differences.

Direction

Many languages, like English and Russian, are written from left to right. Other languages, like Arabic and Hebrew, are

written from right to left. In both these languages, numbers are written from left to right. This makes them bi-

directional.

Director only supports writing systems that are written from left to right.

446ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

Letter forms

In most Western languages, there is a distinction between uppercase letters at the beginning of sentences and words,

and lowercase letters. The writer distinguishes between these letters by pressing the Shift key. In other writing systems,

such as Arabic, there may be different forms for the same character depending on whether it appears at the start of a

word, in the middle of a word, or at the end of the word. The shape of a character that you have already typed may

change automatically as you insert other characters before or after it.

Director relies on the operating system to provide information on which letter forms to use.

Collation

Different languages, even if they use the same writing system, may use different methods for ordering words in a

dictionary. For example, in Spanish, the alphabet consists of 27 letters, with the inclusion of the letter ñ between n and

p: …m, n, ñ, o, p, … In Thai, which is written from left to right, certain vowels are written to the left of a consonant

that is pronounced first. In the dictionary, the order of the consonants takes priority over the order of the vowels. In

writing systems like Chinese, where there is no "alphabetical" order, the collation system is very complex.

The list.sort() method in Director uses character encoding (see numToChar()) to determine order. If you need to use

collation on languages other than English, you will probably need to create a custom system, or rely on a third-party

database xtra extension to provide you with the required functionality.

Input Method Editors

When you type text messages on a mobile phone, using the number keys, you are using an Input Method Editor (IME).

Languages such as Chinese, Japanese, and Korean (CJK languages), where there are a large number of characters, use

an IME to map multiple key strokes to a single final character.

Director supports the IME for Chinese, Japanese, and Korean. However, for other writing systems like the Ethiopian

Amharic abugida, built-in IME is not available.

Language Packs

Each writing system has specific requirements for display and editing. These are handled at the level of the operating

system. You need to be sure that the end-user has the appropriate language packs installed and activated. If you are

creating a language-learning application, you may need to provide specific instructions to end-users on how to set up

their system to display and input a foreign language correctly.

Supported languages

With the exception of Right-to-Left languages, the Adobe Director development team is committed to supporting all

languages whose character set features in the UTF-8 standard. The languages listed below have all been actively tested.

• Brazilian Portuguese

• Chinese – Simplified

• Chinese – Traditional

• Dutch

• English

• French

http://help.adobe.com/en_US/Director/11.5/UsingScripting/WSc3ff6d0ea77859461172e0811d64c157c9-7fca.html
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fhelp.adobe.com%2Fen_US%2FDirector%2F11.5%2FUsingScripting%2FWSc3ff6d0ea77859461172e0811d64c1a1b3-7a73.html&ei=BSH7TayFL4rVrQfugtXNDw&usg=AFQjCNEEen2LGsf0oUmNUUFDgkWfHuhwPA

447ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

• German

• Italian

• Japanese

• Korean

• Russian

• Spanish

The language that you are working with may not figure in this list. Unless it is a Right-to-Left language, then it is

officially supported. If you encounter a generic Unicode issue with any supported language, then contact the Adobe

Director development team. This will allow them to provide critical fixes on a case-by-case basis.

Setting up input languages on Windows

The Microsoft® Windows® XP Service Pack 2 (SP2), Microsoft Windows 2000, Windows Vista™, and Windows 7

operating systems have Regional and Language settings, which can be used to add additional languages for keyboard

input. These languages and speech settings appear in the Language bar on the desktop. After you select a language and

set up a localized keyboard, you can start typing the required text in the document. The keyboard layouts are defined

by Microsoft.

1 Install the required fonts in the Windows Fonts directory. For east-Asian languages like Japanese, Chinese (S and

T), and Korean, install the corresponding language packs.

2 On your computer, open the Control Panel and double-click the Regional And Language Options icon to open the

Regional And Language Options dialog box.

3 Click the Languages tab.

4 Click the Details button to open the Text Services And Input Languages dialog box.

5 In the Settings tab, click the Add button.

6 Select a language from the Input language list.

7 Click OK. The selected language is included in the Installed services list.

8 Select the desired language in the Default input language list.

9 Click Apply, and then click OK to save the settings, and close the Text Services And Input Languages dialog box.

10 Click the Regional Options tab, and then choose the language you selected in the default input language list.

Click Apply and then click OK to save the settings and close the Regional And Language Options dialog box. The

Language bar or the Input Method Editor (IME) appears in the system tray of your computer.

448ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

Choosing an input language on Windows XP

Setting up input languages on OS X 10.6 for Macs with
Intel processors

You do not have to install language packs on OS X 10.6 for Macs with Intel processors, which come equipped with

language packs.

• Click System Preferences to open the System Preferences dialog box.

• Click International. The International dialog box appears.

• Click Input Menu.

• Select a language from the list that appears.

• Check the Show Input In Menu Bar check box to allow rapid switching of input methods

• Close the Input Menu.

449ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

The Input Menu anchor of the International pane of the System Preferences window

Using Unicode in scripts

Director supports the use of Unicode in scripts and in the Message window. The default font for scripts may not

contain the characters that you need to display. To change the font used to display scripts, right-click on the Script

window, and select Script Preferences from the contextual menu.

450ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

Right-click on the Script window to select Script Preferences

In the Script Window Preferences dialog window, click on the Font button, and select your preferred font, size, style,

and color.

Selecting a new font for the Script and Message windows

Many developers prefer to use a monospaced font for writing scripts. There are not many monospaced fonts available

which support a wide range of Unicode characters. You can try Ascender Uni Duo, which is relatively more complete.

http://www.ascenderfonts.com/font/ascender-uni-duo.aspx

451ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

Creating Director movies in multiple languages

You can use Director's Unicode support to create movies in languages other than English.

Select the language from the language bar (Windows) or International settings (OS X 10.6 for Macs with Intel®

processors).

• Open Director.

• Open a text field (such as a text editor or script editor) in which you want to type in the selected language.

• From the font options in the text editor, select a font for the selected language. For the script editor or message

window, select Edit > Preferences > Script, and click the Font button in the Script Window Preferences dialog box

to set the font.

• Start typing content in the selected language.

• Before you input and display multilingual text in your document, configure the regional language or locale settings

on your computer to add the required languages for keyboard input.

Embedding Unicode fonts

To ensure that your end-users can see text written in languages that require specific fonts, you can create a Font

member and deliver it with your movie.

Only fonts that can be converted to an outline are available for embedding as a Font member. To see the full list of

outline fonts available on your development computer, execute the following line in the Message window:

put member(1).outlineFontList()

Note: In Director, certain fonts that are considered outline fonts on Windows are not available as outline fonts on

Macintosh, and therefore cannot be converted to Font members on the Macintosh platform.

As the illustration below shows, the font Arial Unicode MS can be used to display many different writing in a Director

text member on the Macintosh platform, but it does not appear in the list of fonts that can be converted to a Font

member.

452ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

Certain fonts that support a wide range of writing systems cannot be converted to a Font member on Macintosh

Here is a short list of TTF fonts that are commonly installed on both Mac OS X and on Windows, but which can only

be converted to a Font member on Windows:

• Arial

• Arial Black

• Comic Sans MS

• Courier New

• Tahoma

• Times New Roman

• Trebuchet MS

• Verdana

Here is a Lingo movie script handler that will print out the names of the fonts that are available to Director, but which

cannot be converted to a Font member.

453ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

on ShowNonEmbeddableFonts()
 vFont = new(#font)
 vFontList = vFont.fontList()
 vOutlines = vFont.outlineFontList()
 vFont.erase()
 ii = vFontList.count
 repeat while ii
 vFontName = vFontList[ii]
 if vOutlines.getPos(vFontName) then
 vFontList.deleteAt(ii)
 end if
 ii = ii - 1
 end repeat
 vFontList.sort()
 put vFontList
end ShowNonEmbeddableFonts

On Windows, you will find that this list consists mostly of bitmapped fonts with the FON extension. On Macinstosh,

it may include a number of fonts in the True Type Format (TTF), despite the fact that these fonts are designed as

outlines using Apple technology. Click here for more information on the TTF format.

Displaying a list of fonts that cannot be converted to Font members on Macintosh

Note: Before purchasing a license for a font that you plan to convert to a Font member for your Director application, you

may wish to check that the font appears to Director as an outline font on the platform for which you are purchasing the

license

Storing text in any character set

In Director 11, strings must contain only valid UTF-8 characters. This limitation causes problems if you want to

represent non-UTF-8 characters in Lingo. For example, the null byte %00000000 is not a valid UTF-8 character. Click

here for more examples. As a result, reading or writing binary data to a file is not possible in Director 11.

http://en.wikipedia.org/wiki/TrueType
http://en.wikipedia.org/wiki/UTF-8#Invalid_byte_sequences
http://en.wikipedia.org/wiki/UTF-8#Invalid_byte_sequences

454ADOBE DIRECTOR BASICS

Unicode support in Director

Last updated 3/24/2014

As a solution, Director 11.5 provides a new Lingo object called ByteArray. The ByteArray object can be used to store

text in any character set, as well as non-text data. In addition, it also enhances some of the existing Director Xtras.

Use a ByteArray to do the following:

• Represent non-UTF-8 strings or any binary data

• Devise a framework to serialize the state of a Lingo/JavaScript object

• Read/write binary data, or a mix of binary and text data, from a file

• Handle text files for any character set

• Download or upload non-UTF-8 data from the Internet

Implement algorithms in Lingo that require byte-level access. For example, implement an encryption algorithm in

Lingo.

Character sets in Lingo

Lingo exposes methods for querying the supported character sets on a system.

Director supports a subset of the style character-set definitions specified by the IANA. Character sets of ten languages

are supported.

Character-set conversion rules

The rules for character conversion are as follows:

• The default character set in all cases is UTF-8.

• If a character cannot be represented in the specified character set, Director substitutes it with the "?" character.

• Best practice is to use UTF-8 encoding wherever possible and to check the support status of a character set before

using it.

XML Xtra

XML documents can be created using any encoding, and encoding information is embedded using this XML

declaration tag:

<?xml version="1.0" encoding="utf-8"?>

Further, XML documents can potentially embed binary data blobs inside them, making it impossible to represent the

entire XML document using UTF-8.

Director 11.5 introduces a new method in the XML parser to handle byte arrays. The XML parser uses the XML

declaration tag of the document to identify the text encoding of a document.

http://www.iana.org/assignments/character-sets

	Legal notices
	Contents
	Chapter 1: Preface
	Credits
	Feedback

	Chapter 2: 3D basics
	What is Shockwave3D?
	Organization of the 3D documentation
	3D Basics
	Controlling Appearance
	Controlling Action

	Introduction to 3D
	The 3D world
	Creating a world
	Basic 3D objects
	Nodes
	Optional 3D objects
	Sound

	3D Sprites
	Rect
	DirectToStage
	Effect of DirectToStage on frame tempo
	Frames and Backgrounds

	Controlling the 3D world
	2D and 3D workflows
	The 2D workflow
	The 3D workflow
	Using Lingo and JavaScript syntax
	Getting started with 3D Text

	Adjusting appearance through scripting
	Programming movement and interactions
	Actions
	Mathematics
	Performance

	The 3D Xtra extension
	Panels for managing 3D content
	Using the Shockwave 3D window
	Using the Property Inspector for 3D
	Using the Property inspector for 3D: List View
	Using the Property inspector for 3D: Renderer
	3D Behaviors in the Library Palette
	Local Behaviors
	Public Behaviors
	Trigger Behaviors
	Independent Behaviors

	Learning more about 3D behaviors
	Viewing tool tips for 3D behaviors
	Using the Behavior Inspector with 3D behaviors

	The elements of a 3D world
	Concepts and Code

	3D space
	A handy mnemonic device
	The origin of the world

	Defining a shape in 3D space
	Vertex points

	World space and model space
	Using the debug property of a model
	Frames of reference

	Transforms, translation, rotation, and scale
	Transforms
	The position and axes of a transform
	Applying a transform to a position
	Translation
	Rotation
	Direction of rotation
	Scaling a model
	Order of execution
	Frame of reference for a movement

	Using a parent to change the frame of reference of a 3D object
	Scaling
	Moving the Cube
	Setting the parent of a model to a custom group

	Using a parent to group several objects together
	Hierarchy

	Using a shader to change the appearance of a model
	Shader types
	Standard shader
	Painter, newsprint and engraver shaders
	Interaction with lights

	Using a texture to place an image on the surface of a model
	Displaying a texture
	Dimensions of texture images
	Computer memory requirements

	Resources, meshes, and shaders
	Custom handling of the shaderList
	Advantage of multiple shaders
	Model resources and texture coordinates

	Lights
	Virtual light and virtual light sources

	Simulated light
	Ambient light
	Diffuse and specular light
	Types of light and computing time

	Light sources
	Ambient Lights
	Directional Lights
	Using the Property Inspector to set the default lighting
	Point lights and spot lights
	Types of light sources and computing time

	The shortcomings of lighting in Shockwave 3D
	Shadows
	Mirrors

	Cameras
	Interface control
	3D and 2D views
	Refreshing the camera view
	To clear or not to clear at render
	Multiple cameras
	Fog

	Field of view
	Frustrum
	Hither and Yon

	Overlays and backdrops
	Interactions
	Mouse interactions
	Dragging
	Steering
	Steering with the keyboard

	Modifiers
	Appearance modifiers
	Behavior modifiers
	Animation Modifiers
	Level of Detail (LOD)
	Subdivision Surfaces (SDS)
	Toon and Inker
	Collision
	Bones Player
	Keyframe Player
	Mesh Deform

	Motions
	Physics
	Review
	3D output
	3D Renderers
	3D Anti-aliasing
	Saving the 3D world
	3D text
	extrude3d()

	Creating 3D text
	Modifying 3D text
	Script and 3D text
	Exceptions
	Lingo and JavaScript syntax script for 3D text
	Properties of extruder resources for text
	Property of Text members
	3D Method for Text members

	Adding a text model to a 3D cast member
	Text in overlays and backdrops
	Sources of 3D content
	Primitives
	3D modeling applications
	Combining sources

	External 3D Files
	Converting to W3D
	Linked or imported W3D files

	Loading from external files
	SketchUp
	Import a Google SketchUp model
	Import models through scripting

	Cloning from other 3D cast members
	Export issues
	Lights
	Tiling and stretching textures
	Naming
	Hierarchy
	Exporting a selection
	Exporting for the #inker modifier
	Exporting animated characters
	Exporting multiple motions
	Exporting hidden objects
	Basic Model Preparation in 3ds Max
	Applying motion capture data

	Native 3D content
	Regular primitives
	Mesh resources
	Examples
	Uses of mesh resources

	Extruder resources
	Particle emitters
	3D behaviors
	Behavior types
	Using the 3D behavior library
	View 3D action behaviors

	Local actions
	Public actions
	Independent actions
	Applying 3D behaviors
	About behavior groups
	Programming issues
	Preload requirements
	Preload
	Internal and external 3D cast members
	State

	Lingo and JavaScript access to 3D objects
	Using getPropRef() and getProp()
	Using symbol()
	Using setProp()
	Cases where getProp and setProp are not required
	Functions and methods missing from JavaScript syntax
	Using count to count objects

	3D namespace
	Ensuring that a name is unique

	Chapter 3: 3D: Controlling appearance
	Nodes
	Groups
	Accessing the groups in a 3D member
	Creating a group
	Deleting a group
	Using a group

	Node hierarchy
	Scripting terms to use with parent-child relationships
	What to preserve with addChild()
	Testing in the Message window
	Moving a node without reference to its parent

	Group("World")
	Scripting terms to use with reference to group("World")
	removeFromWorld() and addWorld()
	Testing in the Message window
	Returning a node to its original place
	boundingSphere
	Pointing at positions in the world

	Frame of reference
	Determining the frame of reference transform
	Converting from one frame of reference to another

	userData
	Permanence of the contents of the userData list

	Uses of the userData list
	Cloning

	Cameras
	Virtual controls
	Additional features
	Properties shared with other nodes
	Perspective
	Multiple cameras
	Creating a new camera on the fly
	Rendering a secondary camera in the 3D sprite
	Deleting a secondary camera view

	Color buffer
	clearValue
	clearAtRender

	RootNode
	Sky box
	Hither and yon
	Minimum value of hither
	X-ray vision: using hither creatively
	Yon

	Fog
	Properties

	Overlays and backdrops
	Displaying textures
	Adding an overlay to a camera
	Inserting an overlay
	Removing an overlay
	Adding, inserting and removing backdrops
	Properties for overlays and backdrops
	Accessing an overlay or backdrop in a particular layer
	Finding a particular layer
	Dynamic overlays and backdrops

	Rotating overlays and backdrops
	Text in overlays and backdrops
	Interacting with overlays and backdrops
	Progress bar
	Moving an overlay with the mouse
	Rollover tool tip
	2D buttons in a 3D world

	Lights
	Demo movie
	Light properties
	Demo controls
	Interactions with shaders
	Ambient light
	Ambient property
	Ambient color of #standard shaders

	Directional lights
	Directional light properties

	Point lights
	Point light properties

	Spot lights
	Spot light properties
	How faces are lit
	SpotDecay

	Using shader layers to simulate and enhance lighting
	A 3D world with baked textures and no lights

	Specular Light
	Using specular light
	Shininess
	Performance

	Shaders and appearance modifiers
	Diffuse property for shaders
	Standard shaders
	Color properties
	Emissive
	Surface properties
	Texture properties
	Layer properties
	Blending with the layer below
	Mapping onto the mesh
	Positioning on the mesh
	Adjusting the wrapping
	Layer property lists

	Painter shaders
	Styles and properties
	shadowPercentage and highlightPercentage
	Black and white
	Colors for toon and gradient styles
	Toon
	Gradient

	Engraver shaders
	Properties

	Newsprint shaders
	Properties

	Toon modifier
	Styles and properties
	shadowPercentage and highlightPercentage
	colorSteps
	shadowStrength and highlightStrength

	Inker modifier
	Properties
	lineColor
	creases, boundary and silhouette
	creaseAngle
	lineOffset and useLineOffset

	Textures
	Texture names
	Accessing a texture
	Counting textures
	Creating textures at runtime
	Providing an image source when creating a new texture
	Deleting a texture
	Images for textures
	Creating textures that appear to have custom sizes
	Images for particle emitters

	Texture properties and method
	scaleDown() method
	Setting the member or image properties
	renderFormat
	quality
	nearFiltering
	compressed

	Mapping a texture to a mesh resource
	Mapping
	Defining faces in a mesh
	Determining which pixel is at a given uv coordinate
	Drawing on a 3D model

	Rendering
	Using rendering methods
	Selecting a preferred 3D renderer in Director
	Selecting a 3D renderer through code
	Texture renderFormat
	textureRenderFormat

	Antialiasing
	Render to texture

	Geometry
	Models
	Accessing the models in a 3D member
	Creating and deleting models
	Geometry
	shaderList
	Placement in 3D world space
	Appearance
	Properties and methods shared with other nodes
	Features unique to models
	Sources

	Manipulating models
	Model resources
	Accessing the resource of a model
	Creating modelResources
	Deleting model resources

	Primitives
	Creating a regular primitive resource
	Geometry of a regular primitive resource
	Modifying the mesh of a primitive resource

	Creating an extruder resource
	Extruding text
	How it works
	Geometry
	Extruder properties
	Multiple meshes
	Fonts and font properties
	Using a custom vertexList
	Texture mapping

	Creating a mesh resource
	Do-it-yourself mesh movies
	Ingredients
	Defining a vertexList
	Defining the faces
	textureCoordinateList
	Mapping vertices to texture coordinates
	Defining normals
	Defining a colorList
	Creating the mesh
	Creating a model from a mesh resource
	Manipulating the vertexList and normalList

	Creating a terrain mesh
	Data required to create a terrain mesh
	Using a bitmap image as a height map
	Generating the face list
	Generating the TextureCoordinate List
	Texture mappings for each vertex of each face
	Creating the mesh resource
	Using the mesh

	Mesh resources with multiple shaders
	Manipulating a mesh resource
	Modifying the vertexList
	Modifying the normalList
	Showing the flap at any angle
	Modifying other properties

	MeshDeform modifier
	Adding the meshDeform modifier to a model
	Removing the modifier
	Meshes and faces
	Mesh properties
	Example values
	Face values
	Accessing face values
	Neighbor data
	Manipulating the model resource using the meshDeform modifier
	Updating normals
	Multiple texture layers
	Dragging in world space and mesh space

	Level of detail (LOD) modifier
	Adding the LOD modifier to a model
	Removing the modifier
	LOD properties

	Subdivision surfaces (SDS) modifier
	Adding the SDS modifier to a model
	Removing the modifier
	SDS properties
	SDS and spot lights

	Flat shading and smooth shading

	Particles
	Defining a particle system
	Saving a particle system
	Using the Particle Script
	Multiple particle systems
	Emitter.region

	Moving the emitter.region
	Scale
	Billboards with a single particle

	Chapter 4: 3D: Controlling action
	Arranging objects in a 3D world
	Frames of reference
	Transforms
	Transform properties
	The frame of reference for a transform
	Get-only properties

	Setting a node's position
	WorldPosition
	GetWorldTransform()
	Node.transform.position
	Multiplying by a transform to convert between frames of reference

	Translation
	Orientation and scale of the frame of reference

	Setting the rotation of a node

	Rotate()
	Using a group to help define a rotation

	Using pointAt() to rotate a node
	Defining an upwards direction
	Defining a node's pointAt direction
	Example

	Moving the camera
	Camera control
	Choosing the appropriate movement for the 3D scenes
	Giving user the control of the movement
	Keyboard control of the camera
	Moving the viewpoint through space
	Mouse control of the camera
	Looking around from the current viewpoint
	Controlling interactions between the camera and the world
	Providing feedback on the camera's current location and orientation

	Rotating around an object
	Preset Views
	Following a pre-defined path
	Steering with the mouse
	Three in one
	Light on the wrist
	Move later

	Looking around
	Not walking through objects
	modelsUnderRay()
	The concept
	One calculation per frame
	Controlling forward movement
	Advantages of using a parent node

	Steering with the keyboard
	Turning
	Moving
	Collision Detection
	Click and go

	Moving to a given location
	Click to go
	Jumping directly to the target position
	Attempting to move
	Moving towards the target point

	Finding a path
	Third-person camera
	The concept
	Placing a script instance on a node's userData list
	Required information
	Action
	Sample code

	MiniMap
	Setting up the bird's-eye view camera
	Making objects visible from above
	Jumping to a new position
	Rear-view mirror

	Making the camera move naturally
	Other ideas

	Pre-defined camera movements
	Sliding along a wall
	Hugging Terrain
	Creating a terrain
	Detecting the terrain under the avatar

	Moving to a new zone
	User interaction
	Mouse input
	Touch screens
	Clicking and dragging
	Keyboard input
	Other input devices

	Mouse control
	Picking
	modelUnderLoc()
	modelsUnderLoc()

	Pick Action behavior
	Registration
	Testing with a simple script
	Parameters sent with mouse event handlers
	mouseUpOutside
	Advantages of adding instances to a model's userData list
	Disadvantages
	stopEvent

	Sprite space and world space
	worldSpaceToSpriteSpace()
	Using worldSpaceToSpriteSpace()
	spriteSpaceToWorldSpace()
	Placing a model under the mouse

	Dragging
	Dragging a model on a horizontal plane
	Dragging a model over a terrain
	Dragging a model parallel to the sprite viewport
	Additional example

	Keyboard control
	3D sprites and keyboard focus
	Keyboard issues
	Detecting keyboard input
	Monitoring which key was released
	Visualizing different keyboard layouts
	Characters, key and keyCode
	Issues with keyPressed() on Macintosh
	Issues with keyPressed() on Windows
	keyCode values for UTF-8 input
	Differences between the authoring environment and Shockwave
	Multiple simultaneous key presses
	Arrow Keys

	Customizing control keys
	A screen for customizing controls
	Treating keyboard input

	Motion
	Code-driven motion
	Types of motion
	Updating a node on every frame

	Linear motion
	Using Lingo to simulate linear motion and friction
	Throwing the puck
	Calculating the current position of the puck
	The puck stops

	Interpolation
	Using interpolate()
	Examples
	Using interpolateTo()
	Example uses

	Following a path
	Creating a tube
	Moving along the path
	Looking along the path

	Pre-defined animations
	Motions
	Play list
	Adding a motion to the playList
	Removing a motion from the playList
	Motion blending
	Animation properties
	Animation Methods
	Animation Events

	Keyframe animations
	Adding the keyframePlayer to an invisible model
	Playing a motion
	Pausing playback of motions
	Removing all motions from a model
	Looping a motion between custom limits

	Bones animations
	Bones
	Bone properties
	Motion mapping
	update()
	Playing a motion
	Pausing playback of motions
	Removing all motions from a model
	Looping a motion between custom limits

	Collisions
	Detecting collisions
	Resolving collisions

	Collision modifier
	Adding the collision modifier to a model
	Removing the modifier
	Collision properties
	Collision events
	collisionData
	Testing with Collide.dir
	Bugs in the collision modifier

	Custom collision detection
	Collision between two spheres
	Resolving a collision between two spheres

	Rays
	modelsUnderRay()
	Detecting obstacles in the direction of motion
	Using modelsUnderRay()
	Additional examples

	2D barriers
	Simplified collision geometry
	Building the barrier mesh

	Bouncing off a wall
	Calculating the new speed and direction

	Physics
	Physics member
	Controlling a physics simulation
	Simulations and shortcuts
	Step-wise simulations
	An ideal world?
	Iterative processes
	Invisible forces

	Physics world
	Initialization
	timeStepMode
	timeStep
	simulate()

	Physics world properties
	gravity and dimensions
	restitution
	friction
	linearDamping
	AngularDamping
	sleepThreshold
	sleepMode
	contactTolerance

	Rigid bodies
	Creating a new rigidBody
	Using flipNormals
	Accessing a rigidBody
	Deleting a rigidBody

	Rigid body properties
	Get-only properties
	Properties inherited from the Physics world
	Mass and position properties
	Static properties
	Motion properties
	Other properties

	Rigid body methods
	Force and linearImpulse
	Torque and angularImpulse
	attemptMoveTo()

	Rigid body proxies
	Dynamic concave rigid body parameters
	Recommendations

	Terrains
	Creating custom terrains
	Points to note

	Ray casting
	Comparison with modelsUnderRay()

	Collisions
	Controlling collision detection
	Controlling collision callbacks
	Experimenting with collision detection
	Collision callbacks contact reports
	Filtering for pertinent collisions
	Limiting the number of reported collisions
	Preventing unwanted collisions
	Disabling collisions
	Collision disabled pairs
	Changing the callback handler

	Joints and springs
	ConstraintDesc
	Example
	Creating the constraint
	Examples
	Properties: differences and similarities
	Configurable properties
	Accessing joints and springs
	Deleting a joint or spring

	Angular joint properties
	Linear joint properties
	Spring properties
	Additional example

	D6Joints
	Experimenting
	Limited freedom
	Drive
	Additional example

	D6Joint method and properties
	createD6Joint() method
	Get-only properties
	Anchor properties
	Freedom properties
	Limit properties
	Drive properties
	Drive target properties
	Axis properties

	Cloth
	Creating the cloth
	Attaching the cloth to a rigid body
	Sleeping and Waking

	Character controller
	Events
	2D events and 3D events
	Registering a script or instance for a 3D event
	Custom handler names, custom locations
	Events to register for
	Ways to register
	Stopping callbacks
	Callback parameters

	Animation event callback
	Callback parameters
	Pausing and stopping the animation callback

	timeMS event callback
	Callback parameters
	Pausing and stopping the #timeMS event

	3D mathematics
	Vectors
	Creating a vector
	Pointers and duplicates
	Vector properties
	Position and translation vectors
	Other uses of vectors

	Vector methods and operations
	Unit vectors
	Comparing vectors
	Distance and angle
	Binary operations
	Uses of binary operations
	Vector products
	Dot product
	Cross product

	Transforms
	Creating a transform
	Visualizing a transform
	The position and axes of a transform

	Transform properties
	Transforms methods
	Positioning a transform
	Operations with transforms
	Using a transform to set a frame of reference
	Parent and child relationships with no nodes
	Identity and inverse
	Applying a preliminary manipulation to a transform
	Applying one transform to another
	Interpolation

	3D mathematics recipes
	Defining a plane
	Calculating the normal to a plane
	Getting the shortest distance to a plane
	Getting the closest point in a plane
	Mapping a vector to a plane
	Finding where a ray intersects a plane
	Getting a bearing
	Reflecting a vector in a plane
	Rotating a vector position around an axis
	Converting a world transform to a local transform
	Get bounding box

	Performance
	Optimizing performance

	Low-polygon modelling
	Reducing the number of faces at runtime
	Polygons and particle emitters

	Shader count and model count
	Specular light
	Culling
	Antialiasing
	Using 3D anti-aliasing
	Effects of anti-aliasing
	Determining whether anti-aliasing is supported
	Turning on anti-aliasing
	Turning off anti-aliasing

	suspendUpdates
	Physics simulations
	sleepThreshold
	Generating collision callback events
	Proxy geometry
	Terrains
	Ray casting

	CPU-friendly code
	Placing timer points in your scripts
	Comparing potential solutions

	Using frame events wisely
	enterFrame
	exitFrame
	stepFrame and prepareFrame

	Chapter 5: Audio mixers and sound objects
	Audio mixers
	Creating a new mixer
	Mixer methods
	Mixer properties

	Sound objects
	Creating a new sound object
	Sound object methods
	Sound object properties

	The Audio Mixer Inspector
	Floating or document window
	Creating a new mixer
	Naming a mixer
	Mixer properties
	Removing a mixer

	Adding a sound object to a mixer
	Sound object properties
	Removing a sound object from a mixer
	Removing all sound objects

	Applying filters to a sound object or mixer
	Enabling and disabling filters
	Applying an action to multiple filters

	Playing a mixer or sound object
	Disabled properties

	Exporting a mixer or a sound object
	Modifying mixer, sound object, or Filter properties
	Activating a mixer
	Resetting a mixer
	Creating a mixer asset reference
	Examples

	Mixing MP4 movie sound with other sounds
	Playing just the soundtrack of a video
	Playing the video with additional soundtracks

	Chapter 6: Asynchronous programming
	Basics of asynchronous programming
	Sample program
	Tracking the progress of the operation

	Events for asynchronous operations

	actorList and #stepFrame events
	Adding an object to the actorList
	Removing an object from the actorList
	Clearing the actorList
	Order of execution
	Example
	Sending a custom message to the actorList
	Using an actorList event to remove an object

	Timeout objects
	Creating a timeout object
	Syntax
	Examples
	Deleting a timeout object

	Timeout object properties
	name
	period
	persistent
	target
	Time
	timeoutHandler

	Using timeoutList
	Order of service

	Relaying system events with timeout objects
	Associating custom properties with timeout objects
	Downloading data from a remote server
	Downloading or preloading
	getNetText and postNetText
	Retrieving data as an asynchronous operation
	Tracking download progress

	Interacting with PHP scripts
	Querying a MySQL database

	Chapter 7: Unicode support in Director
	Limitations of Unicode support in Director
	Encoding and fonts
	Writing systems
	Direction
	Letter forms
	Collation
	Input Method Editors
	Language Packs

	Supported languages
	Setting up input languages on Windows
	Setting up input languages on OS X 10.6 for Macs with Intel processors
	Using Unicode in scripts
	Creating Director movies in multiple languages
	Embedding Unicode fonts
	Storing text in any character set
	Character sets in Lingo
	Character-set conversion rules
	XML Xtra

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200049006e0073007400720075006300740069006f006e0061006c00200043006f006d006d0075006e00690063006100740069006f006e002700730020005000720069006e0074002d006f006e002d00440065006d0061006e0064002000500044004600200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e000d005b007500700064006100740065006400200033002d007300650070002d0032003000300034005d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

